

STIX 2 Python API Documentation

Welcome to the STIX 2 Python API’s documentation. This library is designed to
help you work with STIX 2 content. For more information about STIX 2, see the
website [http://cti-tc.github.io] of the OASIS Cyber Threat Intelligence
Technical Committee.

Get started with an overview of the library, then take a look
at the guides and tutorials to see how to use it. For information
about a specific class or function, see the API reference.

Contents:

	Overview
	Goals

	Design Decisions

	Architecture
	Object Layer

	Environment Layer

	Workbench Layer

	User’s Guide
	Creating STIX Content
	Creating STIX Domain Objects

	Creating Relationships

	Creating Bundles

	Custom STIX Content
	Custom Properties

	Custom STIX Object Types

	Custom Cyber Observable Types

	Custom Cyber Observable Extensions

	DataStore API
	CompositeDataSource

	Filters

	De-Referencing Relationships

	Using Environments
	Storing and Retrieving STIX Content

	Creating STIX Objects With Defaults

	FileSystem
	FileSystem API

	FileSystem Examples

	Data Markings
	Creating Objects With Data Markings

	Adding Data Markings To Existing Objects

	Evaluating Data Markings

	Memory
	Memory API

	Memory Examples

	load_from_file() and save_to_file()

	Parsing STIX Content
	Parsing Custom STIX Content

	Serializing STIX Objects

	TAXIICollection
	TAXIICollection API

	TAXIICollection Examples

	Bug and Workaround

	Technical Specification Support
	How imports work

	How parsing works

	How custom content works

	Versioning

	Using The Workbench
	Retrieving STIX Data

	Creating STIX Data

	API Reference
	core

	datastore
	filesystem

	filters

	memory

	taxii

	environment

	exceptions

	markings
	granular_markings

	object_markings

	utils

	patterns

	properties

	utils

	workbench

	common

	observables

	sdo

	sro

	Contributing
	Setting up a development environment

	Code style

	Testing

Indices and tables

	Index

	Module Index

	Search Page

Overview

Goals

High level goals/principles of the Python stix2 library:

	It should be as easy as possible (but no easier!) to perform common tasks of
producing, consuming, and processing STIX 2 content.

	It should be hard, if not impossible, to emit invalid STIX 2.

	The library should default to doing “the right thing”, complying with both
the STIX 2.0 spec, as well as associated best practices. The library should
make it hard to do “the wrong thing”.

Design Decisions

To accomplish these goals, and to incorporate lessons learned while developing
python-stix (for STIX 1.x), several decisions influenced the design of the
stix2 library:

	All data structures are immutable by default. In contrast to python-stix,
where users would create an object and then assign attributes to it, in
stix2 all properties must be provided when creating the object.

	Where necessary, library objects should act like dict‘s. When treated as
a str, the JSON reprentation of the object should be used.

	Core Python data types (including numeric types, datetime) should be used
when appropriate, and serialized to the correct format in JSON as specified
in the STIX 2 spec.

Architecture

The stix2 library is divided into three logical layers, representing
different levels of abstraction useful in different types of scripts and larger
applications. It is possible to combine multiple layers in the same program,
and the higher levels build on the layers below.

Object Layer

The lowest layer, the Object Layer, is where Python objects representing STIX 2
data types (such as SDOs, SROs, and Cyber Observable Objects, as well as
non-top-level objects like External References, Kill Chain phases, and Cyber
Observable extensions) are created, and can be serialized and deserialized
to and from JSON representation.

This layer is appropriate for stand-alone scripts that produce or consume STIX
2 content, or can serve as a low-level data API for larger applications that
need to represent STIX objects as Python classes.

At this level, non-embedded reference properties (those ending in _ref, such
as the links from a Relationship object to its source and target objects) are
not implemented as references between the Python objects themselves, but by
simply having the same values in id and reference properties. There is no
referential integrity maintained by the stix2 library.

Environment Layer

The Environment Layer adds several components that make it easier to handle
STIX 2 data as part of a larger application and as part of a larger cyber threat
intelligence ecosystem.

	Data Sources represent locations from which STIX data can be retrieved,
such as a TAXII server, database, or local filesystem. The Data Source API
abstracts differences between these storage location, giving a common API to
get objects by ID or query by various properties, as well as allowing
federated operations over multiple data sources.

	Similarly, Data Sink objects represent destinations for sending STIX data.

	An Object Factory provides a way to add common properties to all created
objects (such as the same created_by_ref, or a StatementMarking with
copyright information or terms of use for the STIX data).

Each of these components can be used individually, or combined as part of an
Environment. These Environment objects allow different settings to be
used by different users of a multi-user application (such as a web application).
For more information, check out this Environment tutorial.

Workbench Layer

The highest layer of the stix2 APIs is the Workbench Layer, designed for
a single user in a highly-interactive analytical environment (such as a Jupyter
Notebook [https://jupyter.org/]). It builds on the lower layers of the API,
while hiding most of their complexity. Unlike the other layers, this layer is
designed to be used directly by end users. For users who are comfortable with
Python, the Workbench Layer makes it easy to quickly interact with STIX data
from a variety of sources without needing to write and run one-off Python
scripts. For more information, check out this Workbench tutorial.

User’s Guide

This section of documentation contains guides and tutorials on how to use the
stix2 library.

	Creating STIX Content
	Creating STIX Domain Objects

	Creating Relationships

	Creating Bundles

	Custom STIX Content
	Custom Properties

	Custom STIX Object Types

	Custom Cyber Observable Types

	Custom Cyber Observable Extensions

	DataStore API
	CompositeDataSource
	CompositeDataSource API
	CompositeDataSource Examples

	Filters
	Filter Examples

	De-Referencing Relationships

	Using Environments
	Storing and Retrieving STIX Content

	Creating STIX Objects With Defaults

	FileSystem
	FileSystem API

	FileSystem Examples
	FileSystemStore

	FileSystemSource

	FileSystemSink

	Data Markings
	Creating Objects With Data Markings

	Adding Data Markings To Existing Objects

	Evaluating Data Markings

	Memory
	Memory API

	Memory Examples
	MemoryStore

	load_from_file() and save_to_file()

	Parsing STIX Content
	Parsing Custom STIX Content

	Serializing STIX Objects

	TAXIICollection
	TAXIICollection API

	TAXIICollection Examples
	TAXIICollectionSource

	TAXIICollectionSink

	TAXIICollectionStore

	Bug and Workaround

	Technical Specification Support
	How imports work

	How parsing works

	How custom content works

	Versioning

	Using The Workbench
	Retrieving STIX Data

	Creating STIX Data

Creating STIX Content

Creating STIX Domain Objects

To create a STIX object, provide keyword arguments to the type’s
constructor:

In [3]:

from stix2 import Indicator

indicator = Indicator(name="File hash for malware variant",
 labels=["malicious-activity"],
 pattern="[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']")
print(indicator)

Out[3]:

{
 "type": "indicator",
 "id": "indicator--548af3be-39d7-4a3e-93c2-1a63cccf8951",
 "created": "2018-04-05T18:32:24.193Z",
 "modified": "2018-04-05T18:32:24.193Z",
 "name": "File hash for malware variant",
 "pattern": "[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']",
 "valid_from": "2018-04-05T18:32:24.193659Z",
 "labels": [
 "malicious-activity"
]
}

Certain required attributes of all objects will be set automatically if
not provided as keyword arguments:

	If not provided, type will be set automatically to the correct
type. You can also provide the type explicitly, but this is not
necessary:

In [4]:

indicator2 = Indicator(type='indicator',
 labels=["malicious-activity"],
 pattern="[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']")

Passing a value for type that does not match the class being
constructed will cause an error:

In [5]:

indicator3 = Indicator(type='xxx',
 labels=["malicious-activity"],
 pattern="[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']")

InvalidValueError: Invalid value for Indicator 'type': must equal 'indicator'.

	If not provided, id will be generated randomly. If you provide an
id argument, it must begin with the correct prefix:

In [6]:

indicator4 = Indicator(id="campaign--63ce9068-b5ab-47fa-a2cf-a602ea01f21a",
 labels=["malicious-activity"],
 pattern="[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']")

InvalidValueError: Invalid value for Indicator 'id': must start with 'indicator--'.

For indicators, labels and pattern are required and cannot be
set automatically. Trying to create an indicator that is missing one of
these properties will result in an error:

In [7]:

indicator = Indicator()

MissingPropertiesError: No values for required properties for Indicator: (labels, pattern).

However, the required valid_from attribute on Indicators will be set
to the current time if not provided as a keyword argument.

Once created, the object acts like a frozen dictionary. Properties can
be accessed using the standard Python dictionary syntax:

In [8]:

indicator['name']

Out[8]:

'File hash for malware variant'

Or access properties using the standard Python attribute syntax:

In [9]:

indicator.name

Out[9]:

'File hash for malware variant'

Attempting to modify any attributes will raise an error:

In [10]:

indicator['name'] = "This is a revised name"

TypeError: 'Indicator' object does not support item assignment

In [11]:

indicator.name = "This is a revised name"

ImmutableError: Cannot modify 'name' property in 'Indicator' after creation.

To update the properties of an object, see the
Versioning section.

Creating a Malware object follows the same pattern:

In [12]:

from stix2 import Malware

malware = Malware(name="Poison Ivy",
 labels=['remote-access-trojan'])
print(malware)

Out[12]:

{
 "type": "malware",
 "id": "malware--3d7f0c1c-616a-4868-aa7b-150821d2a429",
 "created": "2018-04-05T18:32:46.584Z",
 "modified": "2018-04-05T18:32:46.584Z",
 "name": "Poison Ivy",
 "labels": [
 "remote-access-trojan"
]
}

As with indicators, the type, id, created, and modified
properties will be set automatically if not provided. For Malware
objects, the labels and name properties must be provided.

You can see the full list of SDO classes
here.

Creating Relationships

STIX 2 Relationships are separate objects, not properties of the object
on either side of the relationship. They are constructed similarly to
other STIX objects. The type, id, created, and modified
properties are added automatically if not provided. Callers must provide
the relationship_type, source_ref, and target_ref
properties.

In [13]:

from stix2 import Relationship

relationship = Relationship(relationship_type='indicates',
 source_ref=indicator.id,
 target_ref=malware.id)
print(relationship)

Out[13]:

{
 "type": "relationship",
 "id": "relationship--34ddc7b4-4965-4615-b286-1c8bbaa1e7db",
 "created": "2018-04-05T18:32:49.474Z",
 "modified": "2018-04-05T18:32:49.474Z",
 "relationship_type": "indicates",
 "source_ref": "indicator--548af3be-39d7-4a3e-93c2-1a63cccf8951",
 "target_ref": "malware--3d7f0c1c-616a-4868-aa7b-150821d2a429"
}

The source_ref and target_ref properties can be either the ID’s
of other STIX objects, or the STIX objects themselves. For readability,
Relationship objects can also be constructed with the source_ref,
relationship_type, and target_ref as positional (non-keyword)
arguments:

In [14]:

relationship2 = Relationship(indicator, 'indicates', malware)
print(relationship2)

Out[14]:

{
 "type": "relationship",
 "id": "relationship--0a646403-f7e7-4cfd-b945-cab5cde05857",
 "created": "2018-04-05T18:32:51.417Z",
 "modified": "2018-04-05T18:32:51.417Z",
 "relationship_type": "indicates",
 "source_ref": "indicator--548af3be-39d7-4a3e-93c2-1a63cccf8951",
 "target_ref": "malware--3d7f0c1c-616a-4868-aa7b-150821d2a429"
}

Creating Bundles

STIX Bundles can be created by passing objects as arguments to the
Bundle constructor. All required properties (type, id, and
spec_version) will be set automatically if not provided, or can be
provided as keyword arguments:

In [15]:

from stix2 import Bundle

bundle = Bundle(indicator, malware, relationship)
print(bundle)

Out[15]:

{
 "type": "bundle",
 "id": "bundle--f83477e5-f853-47e1-a267-43f3aa1bd5b0",
 "spec_version": "2.0",
 "objects": [
 {
 "type": "indicator",
 "id": "indicator--548af3be-39d7-4a3e-93c2-1a63cccf8951",
 "created": "2018-04-05T18:32:24.193Z",
 "modified": "2018-04-05T18:32:24.193Z",
 "name": "File hash for malware variant",
 "pattern": "[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']",
 "valid_from": "2018-04-05T18:32:24.193659Z",
 "labels": [
 "malicious-activity"
]
 },
 {
 "type": "malware",
 "id": "malware--3d7f0c1c-616a-4868-aa7b-150821d2a429",
 "created": "2018-04-05T18:32:46.584Z",
 "modified": "2018-04-05T18:32:46.584Z",
 "name": "Poison Ivy",
 "labels": [
 "remote-access-trojan"
]
 },
 {
 "type": "relationship",
 "id": "relationship--34ddc7b4-4965-4615-b286-1c8bbaa1e7db",
 "created": "2018-04-05T18:32:49.474Z",
 "modified": "2018-04-05T18:32:49.474Z",
 "relationship_type": "indicates",
 "source_ref": "indicator--548af3be-39d7-4a3e-93c2-1a63cccf8951",
 "target_ref": "malware--3d7f0c1c-616a-4868-aa7b-150821d2a429"
 }
]
}

Custom STIX Content

Custom Properties

Attempting to create a STIX object with properties not defined by the
specification will result in an error. Try creating an Identity
object with a custom x_foo property:

In [3]:

from stix2 import Identity

Identity(name="John Smith",
 identity_class="individual",
 x_foo="bar")

ExtraPropertiesError: Unexpected properties for Identity: (x_foo).

To create a STIX object with one or more custom properties, pass them in
as a dictionary parameter called custom_properties:

In [4]:

from stix2 import Identity

identity = Identity(name="John Smith",
 identity_class="individual",
 custom_properties={
 "x_foo": "bar"
 })
print(identity)

Out[4]:

{
 "type": "identity",
 "id": "identity--87aac643-341b-413a-b702-ea5820416155",
 "created": "2018-04-05T18:38:10.269Z",
 "modified": "2018-04-05T18:38:10.269Z",
 "name": "John Smith",
 "identity_class": "individual",
 "x_foo": "bar"
}

Alternatively, setting allow_custom to True will allow custom
properties without requiring a custom_properties dictionary.

In [5]:

identity2 = Identity(name="John Smith",
 identity_class="individual",
 x_foo="bar",
 allow_custom=True)
print(identity2)

Out[5]:

{
 "type": "identity",
 "id": "identity--a1ad0a6f-39ab-4642-9a72-aaa198b1eee2",
 "created": "2018-04-05T18:38:12.270Z",
 "modified": "2018-04-05T18:38:12.270Z",
 "name": "John Smith",
 "identity_class": "individual",
 "x_foo": "bar"
}

Likewise, when parsing STIX content with custom properties, pass
allow_custom=True to
parse():

In [6]:

from stix2 import parse

input_string = """{
 "type": "identity",
 "id": "identity--311b2d2d-f010-5473-83ec-1edf84858f4c",
 "created": "2015-12-21T19:59:11Z",
 "modified": "2015-12-21T19:59:11Z",
 "name": "John Smith",
 "identity_class": "individual",
 "x_foo": "bar"
}"""
identity3 = parse(input_string, allow_custom=True)
print(identity3.x_foo)

Out[6]:

bar

Custom STIX Object Types

To create a custom STIX object type, define a class with the
@CustomObject
decorator. It takes the type name and a list of property tuples, each
tuple consisting of the property name and a property instance. Any
special validation of the properties can be added by supplying an
__init__ function.

Let’s say zoo animals have become a serious cyber threat and we want to
model them in STIX using a custom object type. Let’s use a species
property to store the kind of animal, and make that property required.
We also want a property to store the class of animal, such as “mammal”
or “bird” but only want to allow specific values in it. We can add some
logic to validate this property in __init__.

In [7]:

from stix2 import CustomObject, properties

@CustomObject('x-animal', [
 ('species', properties.StringProperty(required=True)),
 ('animal_class', properties.StringProperty()),
])
class Animal(object):
 def __init__(self, animal_class=None, **kwargs):
 if animal_class and animal_class not in ['mammal', 'bird', 'fish', 'reptile']:
 raise ValueError("'%s' is not a recognized class of animal." % animal_class)

Now we can create an instance of our custom Animal type.

In [8]:

animal = Animal(species="lion",
 animal_class="mammal")
print(animal)

Out[8]:

{
 "type": "x-animal",
 "id": "x-animal--b1e4fe7f-7985-451d-855c-6ba5c265b22a",
 "created": "2018-04-05T18:38:19.790Z",
 "modified": "2018-04-05T18:38:19.790Z",
 "species": "lion",
 "animal_class": "mammal"
}

Trying to create an Animal instance with an animal_class that’s
not in the list will result in an error:

In [9]:

Animal(species="xenomorph",
 animal_class="alien")

ValueError: 'alien' is not a recognized class of animal.

Parsing custom object types that you have already defined is simple and
no different from parsing any other STIX object.

In [10]:

input_string2 = """{
 "type": "x-animal",
 "id": "x-animal--941f1471-6815-456b-89b8-7051ddf13e4b",
 "created": "2015-12-21T19:59:11Z",
 "modified": "2015-12-21T19:59:11Z",
 "species": "shark",
 "animal_class": "fish"
}"""
animal2 = parse(input_string2)
print(animal2.species)

Out[10]:

shark

However, parsing custom object types which you have not defined will
result in an error:

In [11]:

input_string3 = """{
 "type": "x-foobar",
 "id": "x-foobar--d362beb5-a04e-4e6b-a030-b6935122c3f9",
 "created": "2015-12-21T19:59:11Z",
 "modified": "2015-12-21T19:59:11Z",
 "bar": 1,
 "baz": "frob"
}"""
parse(input_string3)

ParseError: Can't parse unknown object type 'x-foobar'! For custom types, use the CustomObject decorator.

Custom Cyber Observable Types

Similar to custom STIX object types, use a decorator to create custom
Cyber
Observable
types. Just as before, __init__() can hold additional validation,
but it is not necessary.

In [12]:

from stix2 import CustomObservable

@CustomObservable('x-new-observable', [
 ('a_property', properties.StringProperty(required=True)),
 ('property_2', properties.IntegerProperty()),
])
class NewObservable():
 pass

new_observable = NewObservable(a_property="something",
 property_2=10)
print(new_observable)

Out[12]:

{
 "type": "x-new-observable",
 "a_property": "something",
 "property_2": 10
}

Likewise, after the custom Cyber Observable type has been defined, it
can be parsed.

In [13]:

from stix2 import ObservedData

input_string4 = """{
 "type": "observed-data",
 "id": "observed-data--b67d30ff-02ac-498a-92f9-32f845f448cf",
 "created_by_ref": "identity--f431f809-377b-45e0-aa1c-6a4751cae5ff",
 "created": "2016-04-06T19:58:16.000Z",
 "modified": "2016-04-06T19:58:16.000Z",
 "first_observed": "2015-12-21T19:00:00Z",
 "last_observed": "2015-12-21T19:00:00Z",
 "number_observed": 50,
 "objects": {
 "0": {
 "type": "x-new-observable",
 "a_property": "foobaz",
 "property_2": 5
 }
 }
}"""
obs_data = parse(input_string4)
print(obs_data.objects["0"].a_property)
print(obs_data.objects["0"].property_2)

Out[13]:

foobaz

Out[13]:

5

Custom Cyber Observable Extensions

Finally, custom extensions to existing Cyber Observable types can also
be created. Just use the
@CustomExtension
decorator. Note that you must provide the Cyber Observable class to
which the extension applies. Again, any extra validation of the
properties can be implemented by providing an __init__() but it is
not required. Let’s say we want to make an extension to the File
Cyber Observable Object:

In [16]:

from stix2 import File, CustomExtension

@CustomExtension(File, 'x-new-ext', [
 ('property1', properties.StringProperty(required=True)),
 ('property2', properties.IntegerProperty()),
])
class NewExtension():
 pass

new_ext = NewExtension(property1="something",
 property2=10)
print(new_ext)

Out[16]:

{
 "property1": "something",
 "property2": 10
}

Once the custom Cyber Observable extension has been defined, it can be
parsed.

In [17]:

input_string5 = """{
 "type": "observed-data",
 "id": "observed-data--b67d30ff-02ac-498a-92f9-32f845f448cf",
 "created_by_ref": "identity--f431f809-377b-45e0-aa1c-6a4751cae5ff",
 "created": "2016-04-06T19:58:16.000Z",
 "modified": "2016-04-06T19:58:16.000Z",
 "first_observed": "2015-12-21T19:00:00Z",
 "last_observed": "2015-12-21T19:00:00Z",
 "number_observed": 50,
 "objects": {
 "0": {
 "type": "file",
 "name": "foo.bar",
 "hashes": {
 "SHA-256": "35a01331e9ad96f751278b891b6ea09699806faedfa237d40513d92ad1b7100f"
 },
 "extensions": {
 "x-new-ext": {
 "property1": "bla",
 "property2": 50
 }
 }
 }
 }
}"""
obs_data2 = parse(input_string5)
print(obs_data2.objects["0"].extensions["x-new-ext"].property1)
print(obs_data2.objects["0"].extensions["x-new-ext"].property2)

Out[17]:

bla

Out[17]:

50

DataStore API

The stix2 library features an interface for pulling and pushing STIX
2 content. This interface consists of
DataStore,
DataSource
and DataSink
constructs: a
DataSource
for pulling STIX 2 content, a
DataSink for
pushing STIX 2 content, and a
DataStore
for both pulling and pushing.

The DataStore,
DataSource,
DataSink
(collectively referred to as the “DataStore suite”) APIs are not
referenced directly by a user but are used as base classes, which are
then subclassed by real DataStore suites. The stix2 library provides
the DataStore suites of
FileSystem,
Memory, and
TAXII. Users are also
encouraged to subclass the base classes and create their own custom
DataStore suites.

CompositeDataSource

CompositeDataSource
is an available controller that can be used as a single interface to a
set of defined
DataSources.
The purpose of this controller is allow for the grouping of
DataSources
and making get()/query() calls to a set of DataSources in one
API call.
CompositeDataSources
can be used to organize/group
DataSources,
federate get()/all_versions()/query() calls, and reduce user
code.

CompositeDataSource
is just a wrapper around a set of defined
DataSources
(e.g.
FileSystemSource)
that federates get()/all_versions()/query() calls
individually to each of the attached
DataSources
, collects the results from each
DataSource
and returns them.

Filters can be attached to
CompositeDataSources
just as they can be done to
DataStores
and
DataSources.
When get()/all_versions()/query() calls are made to the
CompositeDataSource,
it will pass along any query filters from the call and any of its own
filters to the attached
DataSources.
In addition, those
DataSources
may have their own attached filters as well. The effect is that all the
filters are eventually combined when the
get()/all_versions()/query() call is actually executed
within a
DataSource.

A
CompositeDataSource
can also be attached to a
CompositeDataSource
for multiple layers of grouped
DataSources.

CompositeDataSource API

CompositeDataSource Examples

In [4]:

from taxii2client import Collection
from stix2 import CompositeDataSource, FileSystemSource, TAXIICollectionSource

create FileSystemStore
fs = FileSystemSource("/tmp/stix2_source")

create TAXIICollectionSource
colxn = Collection('http://127.0.0.1:5000/trustgroup1/collections/91a7b528-80eb-42ed-a74d-c6fbd5a26116/')
ts = TAXIICollectionSource(colxn)

add them both to the CompositeDataSource
cs = CompositeDataSource()
cs.add_data_sources([fs,ts])

get an object that is only in the filesystem
intrusion_set = cs.get('intrusion-set--f3bdec95-3d62-42d9-a840-29630f6cdc1a')
print(intrusion_set)

get an object that is only in the TAXII collection
ind = cs.get('indicator--02b90f02-a96a-43ee-88f1-1e87297941f2')
print(ind)

Out[4]:

{
 "type": "intrusion-set",
 "id": "intrusion-set--f3bdec95-3d62-42d9-a840-29630f6cdc1a",
 "created_by_ref": "identity--c78cb6e5-0c4b-4611-8297-d1b8b55e40b5",
 "created": "2017-05-31T21:31:53.197Z",
 "modified": "2017-05-31T21:31:53.197Z",
 "name": "DragonOK",
 "description": "DragonOK is a threat group that has targeted Japanese organizations with phishing emails. Due to overlapping TTPs, including similar custom tools, DragonOK is thought to have a direct or indirect relationship with the threat group Moafee. [[Citation: Operation Quantum Entanglement]][[Citation: Symbiotic APT Groups]] It is known to use a variety of malware, including Sysget/HelloBridge, PlugX, PoisonIvy, FormerFirstRat, NFlog, and NewCT. [[Citation: New DragonOK]]",
 "aliases": [
 "DragonOK"
],
 "external_references": [
 {
 "source_name": "mitre-attack",
 "url": "https://attack.mitre.org/wiki/Group/G0017",
 "external_id": "G0017"
 },
 {
 "source_name": "Operation Quantum Entanglement",
 "description": "Haq, T., Moran, N., Vashisht, S., Scott, M. (2014, September). OPERATION QUANTUM ENTANGLEMENT. Retrieved November 4, 2015.",
 "url": "https://www.fireeye.com/content/dam/fireeye-www/global/en/current-threats/pdfs/wp-operation-quantum-entanglement.pdf"
 },
 {
 "source_name": "Symbiotic APT Groups",
 "description": "Haq, T. (2014, October). An Insight into Symbiotic APT Groups. Retrieved November 4, 2015.",
 "url": "https://dl.mandiant.com/EE/library/MIRcon2014/MIRcon%202014%20R&D%20Track%20Insight%20into%20Symbiotic%20APT.pdf"
 },
 {
 "source_name": "New DragonOK",
 "description": "Miller-Osborn, J., Grunzweig, J.. (2015, April). Unit 42 Identifies New DragonOK Backdoor Malware Deployed Against Japanese Targets. Retrieved November 4, 2015.",
 "url": "http://researchcenter.paloaltonetworks.com/2015/04/unit-42-identifies-new-dragonok-backdoor-malware-deployed-against-japanese-targets/"
 }
],
 "object_marking_refs": [
 "marking-definition--fa42a846-8d90-4e51-bc29-71d5b4802168"
]
}

Out[4]:

{
 "type": "indicator",
 "id": "indicator--02b90f02-a96a-43ee-88f1-1e87297941f2",
 "created": "2017-11-13T07:00:24.000Z",
 "modified": "2017-11-13T07:00:24.000Z",
 "name": "Ransomware IP Blocklist",
 "description": "IP Blocklist address from abuse.ch",
 "pattern": "[ipv4-addr:value = '91.237.247.24']",
 "valid_from": "2017-11-13T07:00:24Z",
 "labels": [
 "malicious-activity",
 "Ransomware",
 "Botnet",
 "C&C"
],
 "external_references": [
 {
 "source_name": "abuse.ch",
 "url": "https://ransomwaretracker.abuse.ch/blocklist/"
 }
]
}

Filters

The stix2 DataStore suites -
FileSystem,
Memory, and
TAXII - all use the
Filters module to
allow for the querying of STIX content. Filters can be used to
explicitly include or exclude results with certain criteria. For
example:

	only trust content from a set of object creators

	exclude content from certain (untrusted) object creators

	only include content with a confidence above a certain threshold
(once confidence is added to STIX 2)

	only return content that can be shared with external parties (e.g.
only content that has TLP:GREEN markings)

Filters can be created and supplied with every call to query(),
and/or attached to a
DataStore
so that every future query placed to that
DataStore
is evaluated against the attached filters, supplemented with any further
filters supplied with the query call. Attached filters can also be
removed from
DataStores.

Filters are very simple, as they consist of a field name, comparison
operator and an object property value (i.e. value to compare to). All
properties of STIX 2 objects can be filtered on. In addition, TAXII 2
Filtering parameters for fields can also be used in filters.

TAXII2 filter fields:

	added_after

	id

	type

	version

Supported operators:

	=

	!=

	in

	>

	<

	>=

	<=

Value types of the property values must be one of these (Python) types:

	bool

	dict

	float

	int

	list

	str

	tuple

Filter Examples

In [3]:

import sys
from stix2 import Filter

create filter for STIX objects that have external references to MITRE ATT&CK framework
f = Filter("external_references.source_name", "=", "mitre-attack")

create filter for STIX objects that are not of SDO type Attack-Pattnern
f1 = Filter("type", "!=", "attack-pattern")

create filter for STIX objects that have the "threat-report" label
f2 = Filter("labels", "in", "threat-report")

create filter for STIX objects that have been modified past the timestamp
f3 = Filter("modified", ">=", "2017-01-28T21:33:10.772474Z")

create filter for STIX objects that have been revoked
f4 = Filter("revoked", "=", True)

For Filters to be applied to a query, they must be either supplied with
the query call or attached to a
DataStore,
more specifically to a
DataSource
whether that
DataSource
is a part of a
DataStore
or stands by itself.

In [6]:

from stix2 import MemoryStore, FileSystemStore, FileSystemSource

fs = FileSystemStore("/tmp/stix2_store")
fs_source = FileSystemSource("/tmp/stix2_source")

attach filter to FileSystemStore
fs.source.filters.add(f)

attach multiple filters to FileSystemStore
fs.source.filters.add([f1,f2])

can also attach filters to a Source
attach multiple filters to FileSystemSource
fs_source.filters.add([f3, f4])

mem = MemoryStore()

As it is impractical to only use MemorySink or MemorySource,
attach a filter to a MemoryStore
mem.source.filters.add(f)

attach multiple filters to a MemoryStore
mem.source.filters.add([f1,f2])

De-Referencing Relationships

Given a STIX object, there are several ways to find other STIX objects
related to it. To illustrate this, let’s first create a
DataStore
and add some objects and relationships.

In [10]:

from stix2 import Campaign, Identity, Indicator, Malware, Relationship

mem = MemoryStore()
cam = Campaign(name='Charge', description='Attack!')
idy = Identity(name='John Doe', identity_class="individual")
ind = Indicator(labels=['malicious-activity'], pattern="[file:hashes.MD5 = 'd41d8cd98f00b204e9800998ecf8427e']")
mal = Malware(labels=['ransomware'], name="Cryptolocker", created_by_ref=idy)
rel1 = Relationship(ind, 'indicates', mal,)
rel2 = Relationship(mal, 'targets', idy)
rel3 = Relationship(cam, 'uses', mal)
mem.add([cam, idy, ind, mal, rel1, rel2, rel3])

If a STIX object has a created_by_ref property, you can use the
creator_of()
method to retrieve the
Identity object
that created it.

In [11]:

print(mem.creator_of(mal))

Out[11]:

{
 "type": "identity",
 "id": "identity--b67cf8d4-cc1a-4bb7-9402-fffcff17c9a9",
 "created": "2018-04-05T20:43:54.117Z",
 "modified": "2018-04-05T20:43:54.117Z",
 "name": "John Doe",
 "identity_class": "individual"
}

Use the
relationships()
method to retrieve all the relationship objects that reference a STIX
object.

In [12]:

rels = mem.relationships(mal)
len(rels)

Out[12]:

3

You can limit it to only specific relationship types:

In [13]:

mem.relationships(mal, relationship_type='indicates')

Out[13]:

[Relationship(type='relationship', id='relationship--3b9cb248-5c2c-425d-85d0-680bfef6e69d', created='2018-04-05T20:43:54.134Z', modified='2018-04-05T20:43:54.134Z', relationship_type='indicates', source_ref='indicator--61deb2a5-305a-490e-83b3-9839a9677368', target_ref='malware--9fe343d8-edf7-4f4a-bb6c-a221fb75142d')]

You can limit it to only relationships where the given object is the
source:

In [14]:

mem.relationships(mal, source_only=True)

Out[14]:

[Relationship(type='relationship', id='relationship--8d322508-423b-4d51-be85-a95ad083f8af', created='2018-04-05T20:43:54.134Z', modified='2018-04-05T20:43:54.134Z', relationship_type='targets', source_ref='malware--9fe343d8-edf7-4f4a-bb6c-a221fb75142d', target_ref='identity--b67cf8d4-cc1a-4bb7-9402-fffcff17c9a9')]

And you can limit it to only relationships where the given object is the
target:

In [15]:

mem.relationships(mal, target_only=True)

Out[15]:

[Relationship(type='relationship', id='relationship--3b9cb248-5c2c-425d-85d0-680bfef6e69d', created='2018-04-05T20:43:54.134Z', modified='2018-04-05T20:43:54.134Z', relationship_type='indicates', source_ref='indicator--61deb2a5-305a-490e-83b3-9839a9677368', target_ref='malware--9fe343d8-edf7-4f4a-bb6c-a221fb75142d'),
 Relationship(type='relationship', id='relationship--93e5afe0-d1fb-4315-8d08-10951f7a99b6', created='2018-04-05T20:43:54.134Z', modified='2018-04-05T20:43:54.134Z', relationship_type='uses', source_ref='campaign--edfd885c-bc31-4051-9bc2-08e057542d56', target_ref='malware--9fe343d8-edf7-4f4a-bb6c-a221fb75142d')]

Finally, you can retrieve all STIX objects related to a given STIX
object using
related_to().
This calls
relationships()
but then performs the extra step of getting the objects that these
Relationships point to.
related_to()
takes all the same arguments that
relationships()
does.

In [16]:

mem.related_to(mal, target_only=True, relationship_type='uses')

Out[16]:

[Campaign(type='campaign', id='campaign--edfd885c-bc31-4051-9bc2-08e057542d56', created='2018-04-05T20:43:54.117Z', modified='2018-04-05T20:43:54.117Z', name='Charge', description='Attack!')]

Using Environments

An
Environment
object makes it easier to use STIX 2 content as part of a larger
application or ecosystem. It allows you to abstract away the nasty
details of sending and receiving STIX data, and to create STIX objects
with default values for common properties.

Storing and Retrieving STIX Content

An
Environment
can be set up with a
DataStore
if you want to store and retrieve STIX content from the same place.

In [3]:

from stix2 import Environment, MemoryStore

env = Environment(store=MemoryStore())

If desired, you can instead set up an
Environment
with different data sources and sinks. In the following example we set
up an environment that retrieves objects from
memory and a directory
on the filesystem,
and stores objects in a different directory on the filesystem.

In [6]:

from stix2 import CompositeDataSource, FileSystemSink, FileSystemSource, MemorySource

src = CompositeDataSource()
src.add_data_sources([MemorySource(), FileSystemSource("/tmp/stix2_source")])
env2 = Environment(source=src,
 sink=FileSystemSink("/tmp/stix2_sink"))

Once you have an
Environment
you can store some STIX content in its
DataSinks with
add():

In [7]:

from stix2 import Indicator

indicator = Indicator(id="indicator--01234567-89ab-cdef-0123-456789abcdef",
 labels=["malicious-activity"],
 pattern="[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']")
env.add(indicator)

You can retrieve STIX objects from the
DataSources
in the
Environment
with
get(),
query(),
all_versions(),
creator_of(),
related_to(),
and
relationships()
just as you would for a
DataSource.

In [8]:

print(env.get("indicator--01234567-89ab-cdef-0123-456789abcdef"))

Out[8]:

{
 "type": "indicator",
 "id": "indicator--01234567-89ab-cdef-0123-456789abcdef",
 "created": "2018-04-05T19:27:53.923Z",
 "modified": "2018-04-05T19:27:53.923Z",
 "pattern": "[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']",
 "valid_from": "2018-04-05T19:27:53.923548Z",
 "labels": [
 "malicious-activity"
]
}

Creating STIX Objects With Defaults

To create STIX objects with default values for certain properties, use
an
ObjectFactory.
For instance, say we want all objects we create to have a
created_by_ref property pointing to the Identity object
representing our organization.

In [13]:

from stix2 import Indicator, ObjectFactory

factory = ObjectFactory(created_by_ref="identity--311b2d2d-f010-5473-83ec-1edf84858f4c")

Once you’ve set up the
ObjectFactory,
use its
create()
method, passing in the class for the type of object you wish to create,
followed by the other properties and their values for the object.

In [14]:

ind = factory.create(Indicator,
 labels=["malicious-activity"],
 pattern="[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']")
print(ind)

Out[14]:

{
 "type": "indicator",
 "id": "indicator--c1b421c0-9c6b-4276-9b73-1b8684a5a0d2",
 "created_by_ref": "identity--311b2d2d-f010-5473-83ec-1edf84858f4c",
 "created": "2018-04-05T19:28:48.776Z",
 "modified": "2018-04-05T19:28:48.776Z",
 "pattern": "[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']",
 "valid_from": "2018-04-05T19:28:48.776442Z",
 "labels": [
 "malicious-activity"
]
}

All objects we create with that
ObjectFactory
will automatically get the default value for created_by_ref. These
are the properties for which defaults can be set:

	created_by_ref

	created

	external_references

	object_marking_refs

These defaults can be bypassed. For example, say you have an
Environment
with multiple default values but want to create an object with a
different value for created_by_ref, or none at all.

In [15]:

factory2 = ObjectFactory(created_by_ref="identity--311b2d2d-f010-5473-83ec-1edf84858f4c",
 created="2017-09-25T18:07:46.255472Z")
env2 = Environment(factory=factory2)

ind2 = env2.create(Indicator,
 created_by_ref=None,
 labels=["malicious-activity"],
 pattern="[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']")
print(ind2)

Out[15]:

{
 "type": "indicator",
 "id": "indicator--30a3b39c-5f57-4e7f-9eaf-e1abcb643da4",
 "created": "2017-09-25T18:07:46.255Z",
 "modified": "2017-09-25T18:07:46.255Z",
 "pattern": "[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']",
 "valid_from": "2018-04-05T19:28:53.268567Z",
 "labels": [
 "malicious-activity"
]
}

In [16]:

ind3 = env2.create(Indicator,
 created_by_ref="identity--962cabe5-f7f3-438a-9169-585a8c971d12",
 labels=["malicious-activity"],
 pattern="[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']")
print(ind3)

Out[16]:

{
 "type": "indicator",
 "id": "indicator--6c5bbaaf-6dac-44b0-a0df-86c27b3f6ecb",
 "created_by_ref": "identity--962cabe5-f7f3-438a-9169-585a8c971d12",
 "created": "2017-09-25T18:07:46.255Z",
 "modified": "2017-09-25T18:07:46.255Z",
 "pattern": "[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']",
 "valid_from": "2018-04-05T19:29:56.55129Z",
 "labels": [
 "malicious-activity"
]
}

For the full power of the Environment layer, create an
Environment
with both a
DataStore/Source/Sink
and an
ObjectFactory:

In [17]:

environ = Environment(ObjectFactory(created_by_ref="identity--311b2d2d-f010-5473-83ec-1edf84858f4c"),
 MemoryStore())

i = environ.create(Indicator,
 labels=["malicious-activity"],
 pattern="[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']")
environ.add(i)
print(environ.get(i.id))

Out[17]:

{
 "type": "indicator",
 "id": "indicator--d1b8c3f6-1de1-44c1-b079-3df307224a0d",
 "created_by_ref": "identity--311b2d2d-f010-5473-83ec-1edf84858f4c",
 "created": "2018-04-05T19:29:59.605Z",
 "modified": "2018-04-05T19:29:59.605Z",
 "pattern": "[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']",
 "valid_from": "2018-04-05T19:29:59.605463Z",
 "labels": [
 "malicious-activity"
]
}

FileSystem

The FileSystem suite contains
FileSystemStore,
FileSystemSource
and
FileSystemSink.
Under the hood, all FileSystem objects point to a file directory (on
disk) that contains STIX 2 content.

The directory and file structure of the intended STIX 2 content should
be:

stix2_content/
 /STIX2 Domain Object type
 STIX2 Domain Object
 STIX2 Domain Object
 .
 .
 .
 /STIX2 Domain Object type
 STIX2 Domain Object
 STIX2 Domain Object
 .
 .
 .
 .
 .
 .
 /STIX2 Domain Object type

The master STIX 2 content directory contains subdirectories, each of
which aligns to a STIX 2 domain object type (i.e. “attack-pattern”,
“campaign”, “malware”, etc.). Within each STIX 2 domain object
subdirectory are JSON files that are STIX 2 domain objects of the
specified type. The name of the json files correspond to the ID of the
STIX 2 domain object found within that file. A real example of the
FileSystem directory structure:

stix2_content/
 /attack-pattern
 attack-pattern--00d0b012-8a03-410e-95de-5826bf542de6.json
 attack-pattern--0a3ead4e-6d47-4ccb-854c-a6a4f9d96b22.json
 attack-pattern--1b7ba276-eedc-4951-a762-0ceea2c030ec.json
 /campaign
 /course-of-action
 course-of-action--2a8de25c-f743-4348-b101-3ee33ab5871b.json
 course-of-action--2c3ce852-06a2-40ee-8fe6-086f6402a739.json
 /identity
 identity--c78cb6e5-0c4b-4611-8297-d1b8b55e40b5.json
 /indicator
 /intrusion-set
 /malware
 malware--1d808f62-cf63-4063-9727-ff6132514c22.json
 malware--2eb9b131-d333-4a48-9eb4-d8dec46c19ee.json
 /observed-data
 /report
 /threat-actor
 /vulnerability

FileSystemStore
is intended for use cases where STIX 2 content is retrieved and pushed
to the same file directory. As
FileSystemStore
is just a wrapper around a paired
FileSystemSource
and
FileSystemSink
that point the same file directory.

For use cases where STIX 2 content will only be retrieved or pushed,
then a
FileSystemSource
and
FileSystemSink
can be used individually. They can also be used individually when STIX 2
content will be retrieved from one distinct file directory and pushed to
another.

FileSystem API

A note on
get(),
all_versions(),
and
query():
The format of the STIX2 content targeted by the FileSystem suite is JSON
files. When the
FileSystemStore
retrieves STIX 2 content (in JSON) from disk, it will attempt to parse
the content into full-featured python-stix2 objects and returned as
such.

A note on
add():
When STIX content is added (pushed) to the file system, the STIX content
can be supplied in the following forms: Python STIX objects, Python
dictionaries (of valid STIX objects or Bundles), JSON-encoded strings
(of valid STIX objects or Bundles), or a (Python) list of any of the
previously listed types. Any of the previous STIX content forms will be
converted to a STIX JSON object (in a STIX Bundle) and written to disk.

FileSystem Examples

FileSystemStore

Use the FileSystemStore when you want to both retrieve STIX content from
the file system and push STIX content to it, too.

In [4]:

from stix2 import FileSystemStore

create FileSystemStore
fs = FileSystemStore("/tmp/stix2_store")

retrieve STIX2 content from FileSystemStore
ap = fs.get("attack-pattern--00d0b012-8a03-410e-95de-5826bf542de6")
mal = fs.get("malware--00c3bfcb-99bd-4767-8c03-b08f585f5c8a")

for visual purposes
print(mal)

Out[4]:

{
 "type": "malware",
 "id": "malware--00c3bfcb-99bd-4767-8c03-b08f585f5c8a",
 "created_by_ref": "identity--c78cb6e5-0c4b-4611-8297-d1b8b55e40b5",
 "created": "2017-05-31T21:33:19.746Z",
 "modified": "2017-05-31T21:33:19.746Z",
 "name": "PowerDuke",
 "description": "PowerDuke is a backdoor that was used by APT29 in 2016. It has primarily been delivered through Microsoft Word or Excel attachments containing malicious macros.[[Citation: Volexity PowerDuke November 2016]]",
 "labels": [
 "malware"
],
 "external_references": [
 {
 "source_name": "mitre-attack",
 "url": "https://attack.mitre.org/wiki/Software/S0139",
 "external_id": "S0139"
 },
 {
 "source_name": "Volexity PowerDuke November 2016",
 "description": "Adair, S.. (2016, November 9). PowerDuke: Widespread Post-Election Spear Phishing Campaigns Targeting Think Tanks and NGOs. Retrieved January 11, 2017.",
 "url": "https://www.volexity.com/blog/2016/11/09/powerduke-post-election-spear-phishing-campaigns-targeting-think-tanks-and-ngos/"
 }
],
 "object_marking_refs": [
 "marking-definition--fa42a846-8d90-4e51-bc29-71d5b4802168"
]
}

In [2]:

from stix2 import ThreatActor, Indicator

create new STIX threat-actor
ta = ThreatActor(name="Adjective Bear",
 labels=["nation-state"],
 sophistication="innovator",
 resource_level="government",
 goals=[
 "compromising media outlets",
 "water-hole attacks geared towards political, military targets",
 "intelligence collection"
])

create new indicators
ind = Indicator(description="Crusades C2 implant",
 labels=["malicious-activity"],
 pattern="[file:hashes.'SHA-256' = '54b7e05e39a59428743635242e4a867c932140a999f52a1e54fa7ee6a440c73b']")

ind1 = Indicator(description="Crusades C2 implant 2",
 labels=["malicious-activity"],
 pattern="[file:hashes.'SHA-256' = '64c7e05e40a59511743635242e4a867c932140a999f52a1e54fa7ee6a440c73b']")

add STIX object (threat-actor) to FileSystemStore
fs.add(ta)

can also add multiple STIX objects to FileSystemStore in one call
fs.add([ind, ind1])

FileSystemSource

Use the FileSystemSource when you only want to retrieve STIX content
from the file system.

In [6]:

from stix2 import FileSystemSource

create FileSystemSource
fs_source = FileSystemSource("/tmp/stix2_source")

retrieve STIX 2 objects
ap = fs_source.get("attack-pattern--00d0b012-8a03-410e-95de-5826bf542de6")

for visual purposes
print(ap)

Out[6]:

{
 "type": "attack-pattern",
 "id": "attack-pattern--00d0b012-8a03-410e-95de-5826bf542de6",
 "created_by_ref": "identity--c78cb6e5-0c4b-4611-8297-d1b8b55e40b5",
 "created": "2017-05-31T21:30:54.176Z",
 "modified": "2017-05-31T21:30:54.176Z",
 "name": "Indicator Removal from Tools",
 "description": "If a malicious...command-line parameters, Process monitoring",
 "kill_chain_phases": [
 {
 "kill_chain_name": "mitre-attack",
 "phase_name": "defense-evasion"
 }
],
 "external_references": [
 {
 "source_name": "mitre-attack",
 "url": "https://attack.mitre.org/wiki/Technique/T1066",
 "external_id": "T1066"
 }
],
 "object_marking_refs": [
 "marking-definition--fa42a846-8d90-4e51-bc29-71d5b4802168"
]
}

In [7]:

from stix2 import Filter

create filter for type=malware
query = [Filter("type", "=", "malware")]

query on the filter
mals = fs_source.query(query)

for mal in mals:
 print(mal.id)

Out[7]:

malware--96b08451-b27a-4ff6-893f-790e26393a8e

Out[7]:

malware--b42378e0-f147-496f-992a-26a49705395b

Out[7]:

malware--6b616fc1-1505-48e3-8b2c-0d19337bff38

Out[7]:

malware--92ec0cbd-2c30-44a2-b270-73f4ec949841

In [8]:

add more filters to the query
query.append(Filter("modified", ">" , "2017-05-31T21:33:10.772474Z"))

mals = fs_source.query(query)

for visual purposes
for mal in mals:
 print(mal.id)

Out[8]:

malware--92ec0cbd-2c30-44a2-b270-73f4ec949841

FileSystemSink

Use the FileSystemSink when you only want to push STIX content to the
file system.

In [10]:

from stix2 import FileSystemSink, Campaign, Indicator

create FileSystemSink
fs_sink = FileSystemSink("/tmp/stix2_sink")

create STIX objects and add to sink
camp = Campaign(name="The Crusades",
 objective="Infiltrating Israeli, Iranian and Palestinian digital infrastructure and government systems.",
 aliases=["Desert Moon"])

ind = Indicator(description="Crusades C2 implant",
 labels=["malicious-activity"],
 pattern="[file:hashes.'SHA-256' = '54b7e05e39a59428743635242e4a867c932140a999f52a1e54fa7ee6a440c73b']")

ind1 = Indicator(description="Crusades C2 implant",
 labels=["malicious-activity"],
 pattern="[file:hashes.'SHA-256' = '54b7e05e39a59428743635242e4a867c932140a999f52a1e54fa7ee6a440c73b']")

add Campaign object to FileSystemSink
fs_sink.add(camp)

can also add STIX objects to FileSystemSink in on call
fs_sink.add([ind, ind1])

Data Markings

Creating Objects With Data Markings

To create an object with a (predefined) TLP marking to an object, just
provide it as a keyword argument to the constructor. The TLP markings
can easily be imported from python-stix2.

In [7]:

from stix2 import Indicator, TLP_AMBER

indicator = Indicator(labels=["malicious-activity"],
 pattern="[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']",
 object_marking_refs=TLP_AMBER)
print(indicator)

Out[7]:

{
 "type": "indicator",
 "id": "indicator--95a71cff-fad0-4ffb-a641-8a6eaa642290",
 "created": "2018-04-05T19:49:47.924Z",
 "modified": "2018-04-05T19:49:47.924Z",
 "pattern": "[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']",
 "valid_from": "2018-04-05T19:49:47.924708Z",
 "labels": [
 "malicious-activity"
],
 "object_marking_refs": [
 "marking-definition--f88d31f6-486f-44da-b317-01333bde0b82"
]
}

If you’re creating your own marking (for example, a Statement
marking), first create the statement marking:

In [8]:

from stix2 import MarkingDefinition, StatementMarking

marking_definition = MarkingDefinition(
 definition_type="statement",
 definition=StatementMarking(statement="Copyright 2017, Example Corp")
)
print(marking_definition)

Out[8]:

{
 "type": "marking-definition",
 "id": "marking-definition--13680b12-3d19-4b42-abe6-0d31effe5368",
 "created": "2018-04-05T19:49:53.98008Z",
 "definition_type": "statement",
 "definition": {
 "statement": "Copyright 2017, Example Corp"
 }
}

Then you can add it to an object as it’s being created (passing either
full object or the the ID as a keyword argument, like with
relationships).

In [9]:

indicator2 = Indicator(labels=["malicious-activity"],
 pattern="[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']",
 object_marking_refs=marking_definition)
print(indicator2)

Out[9]:

{
 "type": "indicator",
 "id": "indicator--7caeab49-2472-41bb-a988-2f990aea99bd",
 "created": "2018-04-05T19:49:55.763Z",
 "modified": "2018-04-05T19:49:55.763Z",
 "pattern": "[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']",
 "valid_from": "2018-04-05T19:49:55.763364Z",
 "labels": [
 "malicious-activity"
],
 "object_marking_refs": [
 "marking-definition--13680b12-3d19-4b42-abe6-0d31effe5368"
]
}

In [10]:

indicator3 = Indicator(labels=["malicious-activity"],
 pattern="[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']",
 object_marking_refs="marking-definition--f88d31f6-486f-44da-b317-01333bde0b82")
print(indicator3)

Out[10]:

{
 "type": "indicator",
 "id": "indicator--4eb21bbe-b8a9-4348-86cf-1ed52f9abdd7",
 "created": "2018-04-05T19:49:57.248Z",
 "modified": "2018-04-05T19:49:57.248Z",
 "pattern": "[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']",
 "valid_from": "2018-04-05T19:49:57.248658Z",
 "labels": [
 "malicious-activity"
],
 "object_marking_refs": [
 "marking-definition--f88d31f6-486f-44da-b317-01333bde0b82"
]
}

Granular markings work in the same way, except you also need to provide
a full granular-marking object (including the selector).

In [11]:

from stix2 import Malware, TLP_WHITE

malware = Malware(name="Poison Ivy",
 labels=['remote-access-trojan'],
 description="A ransomware related to ...",
 granular_markings=[
 {
 "selectors": ["description"],
 "marking_ref": marking_definition
 },
 {
 "selectors": ["name"],
 "marking_ref": TLP_WHITE
 }
])
print(malware)

Out[11]:

{
 "type": "malware",
 "id": "malware--ef1eddbb-b5a5-47e0-b607-75b9870d8d91",
 "created": "2018-04-05T19:49:59.103Z",
 "modified": "2018-04-05T19:49:59.103Z",
 "name": "Poison Ivy",
 "description": "A ransomware related to ...",
 "labels": [
 "remote-access-trojan"
],
 "granular_markings": [
 {
 "marking_ref": "marking-definition--13680b12-3d19-4b42-abe6-0d31effe5368",
 "selectors": [
 "description"
]
 },
 {
 "marking_ref": "marking-definition--613f2e26-407d-48c7-9eca-b8e91df99dc9",
 "selectors": [
 "name"
]
 }
]
}

Make sure that the selector is a field that exists and is populated on
the object, otherwise this will cause an error:

In [12]:

Malware(name="Poison Ivy",
 labels=['remote-access-trojan'],
 description="A ransomware related to ...",
 granular_markings=[
 {
 "selectors": ["title"],
 "marking_ref": marking_definition
 }
])

InvalidSelectorError: Selector title in Malware is not valid!

Adding Data Markings To Existing Objects

Several functions exist to support
working with data markings.

Both object markings and granular markings can be added to STIX objects
which have already been created.

Note: Doing so will create a new version of the object (note the
updated modified time).

In [13]:

indicator4 = indicator.add_markings(marking_definition)
print(indicator4)

Out[13]:

{
 "type": "indicator",
 "id": "indicator--95a71cff-fad0-4ffb-a641-8a6eaa642290",
 "created": "2018-04-05T19:49:47.924Z",
 "modified": "2018-04-05T19:50:03.387Z",
 "pattern": "[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']",
 "valid_from": "2018-04-05T19:49:47.924708Z",
 "labels": [
 "malicious-activity"
],
 "object_marking_refs": [
 "marking-definition--13680b12-3d19-4b42-abe6-0d31effe5368",
 "marking-definition--f88d31f6-486f-44da-b317-01333bde0b82"
]
}

You can also remove specific markings from STIX objects. This will also
create a new version of the object.

In [14]:

indicator5 = indicator4.remove_markings(marking_definition)
print(indicator5)

Out[14]:

{
 "type": "indicator",
 "id": "indicator--95a71cff-fad0-4ffb-a641-8a6eaa642290",
 "created": "2018-04-05T19:49:47.924Z",
 "modified": "2018-04-05T19:50:05.109Z",
 "pattern": "[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']",
 "valid_from": "2018-04-05T19:49:47.924708Z",
 "labels": [
 "malicious-activity"
],
 "object_marking_refs": [
 "marking-definition--f88d31f6-486f-44da-b317-01333bde0b82"
]
}

The markings on an object can be replaced with a different set of
markings:

In [15]:

from stix2 import TLP_GREEN

indicator6 = indicator5.set_markings([TLP_GREEN, marking_definition])
print(indicator6)

Out[15]:

{
 "type": "indicator",
 "id": "indicator--95a71cff-fad0-4ffb-a641-8a6eaa642290",
 "created": "2018-04-05T19:49:47.924Z",
 "modified": "2018-04-05T19:50:06.773Z",
 "pattern": "[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']",
 "valid_from": "2018-04-05T19:49:47.924708Z",
 "labels": [
 "malicious-activity"
],
 "object_marking_refs": [
 "marking-definition--13680b12-3d19-4b42-abe6-0d31effe5368",
 "marking-definition--34098fce-860f-48ae-8e50-ebd3cc5e41da"
]
}

STIX objects can also be cleared of all markings with
clear_markings():

In [16]:

indicator7 = indicator5.clear_markings()
print(indicator7)

Out[16]:

{
 "type": "indicator",
 "id": "indicator--95a71cff-fad0-4ffb-a641-8a6eaa642290",
 "created": "2018-04-05T19:49:47.924Z",
 "modified": "2018-04-05T19:50:08.616Z",
 "pattern": "[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']",
 "valid_from": "2018-04-05T19:49:47.924708Z",
 "labels": [
 "malicious-activity"
]
}

All of these functions can be used for granular markings by passing in a
list of selectors. Note that they will create new versions of the
objects.

Evaluating Data Markings

You can get a list of the object markings on a STIX object:

In [17]:

indicator6.get_markings()

Out[17]:

['marking-definition--13680b12-3d19-4b42-abe6-0d31effe5368',
 'marking-definition--34098fce-860f-48ae-8e50-ebd3cc5e41da']

To get a list of the granular markings on an object, pass the object and
a list of selectors to
get_markings():

In [18]:

from stix2 import get_markings

get_markings(malware, 'name')

Out[18]:

['marking-definition--613f2e26-407d-48c7-9eca-b8e91df99dc9']

You can also call
get_markings()
as a method on the STIX object.

In [19]:

malware.get_markings('name')

Out[19]:

['marking-definition--613f2e26-407d-48c7-9eca-b8e91df99dc9']

Finally, you may also check if an object is marked by a specific
markings. Again, for granular markings, pass in the selector or list of
selectors.

In [20]:

indicator.is_marked(TLP_AMBER.id)

Out[20]:

True

In [21]:

malware.is_marked(TLP_WHITE.id, 'name')

Out[21]:

True

In [22]:

malware.is_marked(TLP_WHITE.id, 'description')

Out[22]:

False

Memory

The Memory suite consists of
MemoryStore,
MemorySource,
and
MemorySink.
Under the hood, the Memory suite points to an in-memory dictionary.
Similarly, the
MemoryStore
is a just a wrapper around a paired
MemorySource
and
MemorySink;
as there is quite limited uses for just a
MemorySource
or a
MemorySink,
it is recommended to always use
MemoryStore.
The
MemoryStore
is intended for retrieving/searching and pushing STIX content to memory.
It is important to note that all STIX content in memory is not backed up
on the file system (disk), as that functionality is encompassed within
the
FileSystemStore.
However, the Memory suite does provide some utility methods for saving
and loading STIX content to disk.
MemoryStore.save_to_file()
allows for saving all the STIX content that is in memory to a json file.
MemoryStore.load_from_file()
allows for loading STIX content from a JSON-formatted file.

Memory API

A note on adding and retreiving STIX content to the Memory suite: As
mentioned, under the hood the Memory suite is an internal, in-memory
dictionary. STIX content that is to be added can be in the following
forms: python-stix2 objects, (Python) dictionaries (of valid STIX
objects or Bundles), JSON-encoded strings (of valid STIX objects or
Bundles), or a (Python) list of any of the previously listed types.
MemoryStore
actually stores STIX content either as python-stix2 objects or as
(Python) dictionaries, reducing and converting any of the aforementioned
types to one of those. Additionally, whatever form the STIX object is
stored as, is how it will be returned when retrieved. python-stix2
objects, and json-encoded strings (of STIX content) are stored as
python-stix2 objects, while (Python) dictionaries (of STIX objects) are
stored as (Python) dictionaries.

A note on
load_from_file():
For
load_from_file(),
STIX content is assumed to be in JSON form within the file, as an
individual STIX object or in a Bundle. When the JSON is loaded, the STIX
objects are parsed into python-stix2 objects before being stored in the
in-memory dictionary.

A note on
save_to_file():
This method dumps all STIX content that is in the
MemoryStore
to the specified file. The file format will be JSON, and the STIX
content will be within a STIX Bundle. Note also that the output form
will be a JSON STIX Bundle regardless of the form that the individual
STIX objects are stored in (i.e. supplied to) the
MemoryStore.

Memory Examples

MemoryStore

In [3]:

from stix2 import MemoryStore, Indicator

create default MemoryStore
mem = MemoryStore()

insert newly created indicator into memory
ind = Indicator(description="Crusades C2 implant",
 labels=["malicious-activity"],
 pattern="[file:hashes.'SHA-256' = '54b7e05e39a59428743635242e4a867c932140a999f52a1e54fa7ee6a440c73b']")

mem.add(ind)

for visual purposes
print(mem.get(ind.id))

Out[3]:

{
 "type": "indicator",
 "id": "indicator--41a960c7-a6d4-406d-9156-0069cb3bd40d",
 "created": "2018-04-05T19:50:41.222Z",
 "modified": "2018-04-05T19:50:41.222Z",
 "description": "Crusades C2 implant",
 "pattern": "[file:hashes.'SHA-256' = '54b7e05e39a59428743635242e4a867c932140a999f52a1e54fa7ee6a440c73b']",
 "valid_from": "2018-04-05T19:50:41.222522Z",
 "labels": [
 "malicious-activity"
]
}

In [4]:

from stix2 import Malware

add multiple STIX objects into memory
ind2 = Indicator(description="Crusades stage 2 implant",
 labels=["malicious-activity"],
 pattern="[file:hashes.'SHA-256' = '70fa62fb218dd9d936ee570dbe531dfa4e7c128ff37e6af7a6a6b2485487e50a']")
ind3 = Indicator(description="Crusades stage 2 implant variant",
 labels=["malicious-activity"],
 pattern="[file:hashes.'SHA-256' = '31a45e777e4d58b97f4c43e38006f8cd6580ddabc4037905b2fad734712b582c']")
mal = Malware(labels=["rootkit"], name= "Alexios")

mem.add([ind2,ind3, mal])

for visual purposes
print(mem.get(ind3.id))

Out[4]:

{
 "type": "indicator",
 "id": "indicator--ba2a7acb-a3ac-420b-9288-09988aa99408",
 "created": "2018-04-05T19:50:43.343Z",
 "modified": "2018-04-05T19:50:43.343Z",
 "description": "Crusades stage 2 implant variant",
 "pattern": "[file:hashes.'SHA-256' = '31a45e777e4d58b97f4c43e38006f8cd6580ddabc4037905b2fad734712b582c']",
 "valid_from": "2018-04-05T19:50:43.343298Z",
 "labels": [
 "malicious-activity"
]
}

In [5]:

from stix2 import Filter

mal = mem.query([Filter("labels","=", "rootkit")])[0]
print(mal)

Out[5]:

{
 "type": "malware",
 "id": "malware--9e9b87ce-2b2b-455a-8d5b-26384ccc8d52",
 "created": "2018-04-05T19:50:43.346Z",
 "modified": "2018-04-05T19:50:43.346Z",
 "name": "Alexios",
 "labels": [
 "rootkit"
]
}

load_from_file() and save_to_file()

In [8]:

mem_2 = MemoryStore()

save (dump) all STIX content in MemoryStore to json file
mem.save_to_file("path_to_target_file.json")

load(add) STIX content from json file into MemoryStore
mem_2.load_from_file("path_to_target_file.json")

report = mem_2.get("malware--9e9b87ce-2b2b-455a-8d5b-26384ccc8d52")

for visual purposes
print(report)

Out[8]:

{
 "type": "malware",
 "id": "malware--9e9b87ce-2b2b-455a-8d5b-26384ccc8d52",
 "created": "2018-04-05T19:50:43.346Z",
 "modified": "2018-04-05T19:50:43.346Z",
 "name": "Alexios",
 "labels": [
 "rootkit"
]
}

Parsing STIX Content

Parsing STIX content is as easy as calling the
parse() function on a JSON
string, dictionary, or file-like object. It will automatically determine
the type of the object. The STIX objects within bundle objects, and
the cyber observables contained within observed-data objects will be
parsed as well.

Parsing a string

In [3]:

from stix2 import parse

input_string = """{
 "type": "observed-data",
 "id": "observed-data--b67d30ff-02ac-498a-92f9-32f845f448cf",
 "created": "2016-04-06T19:58:16.000Z",
 "modified": "2016-04-06T19:58:16.000Z",
 "first_observed": "2015-12-21T19:00:00Z",
 "last_observed": "2015-12-21T19:00:00Z",
 "number_observed": 50,
 "objects": {
 "0": {
 "type": "file",
 "hashes": {
 "SHA-256": "0969de02ecf8a5f003e3f6d063d848c8a193aada092623f8ce408c15bcb5f038"
 }
 }
 }
}"""

obj = parse(input_string)
print(type(obj))
print(obj)

Out[3]:

<class 'stix2.v20.sdo.ObservedData'>

Out[3]:

{
 "type": "observed-data",
 "id": "observed-data--b67d30ff-02ac-498a-92f9-32f845f448cf",
 "created": "2016-04-06T19:58:16.000Z",
 "modified": "2016-04-06T19:58:16.000Z",
 "first_observed": "2015-12-21T19:00:00Z",
 "last_observed": "2015-12-21T19:00:00Z",
 "number_observed": 50,
 "objects": {
 "0": {
 "type": "file",
 "hashes": {
 "SHA-256": "0969de02ecf8a5f003e3f6d063d848c8a193aada092623f8ce408c15bcb5f038"
 }
 }
 }
}

Parsing a dictionary

In [4]:

input_dict = {
 "type": "identity",
 "id": "identity--311b2d2d-f010-5473-83ec-1edf84858f4c",
 "created": "2015-12-21T19:59:11Z",
 "modified": "2015-12-21T19:59:11Z",
 "name": "Cole Powers",
 "identity_class": "individual"
}

obj = parse(input_dict)
print(type(obj))
print(obj)

Out[4]:

<class 'stix2.v20.sdo.Identity'>

Out[4]:

{
 "type": "identity",
 "id": "identity--311b2d2d-f010-5473-83ec-1edf84858f4c",
 "created": "2015-12-21T19:59:11.000Z",
 "modified": "2015-12-21T19:59:11.000Z",
 "name": "Cole Powers",
 "identity_class": "individual"
}

Parsing a file-like object

In [5]:

file_handle = open("/tmp/stix2_store/course-of-action/course-of-action--d9727aee-48b8-4fdb-89e2-4c49746ba4dd.json")

obj = parse(file_handle)
print(type(obj))
print(obj)

Out[5]:

<class 'stix2.v20.sdo.CourseOfAction'>

Out[5]:

{
 "type": "course-of-action",
 "id": "course-of-action--d9727aee-48b8-4fdb-89e2-4c49746ba4dd",
 "created_by_ref": "identity--c78cb6e5-0c4b-4611-8297-d1b8b55e40b5",
 "created": "2017-05-31T21:30:41.022Z",
 "modified": "2017-05-31T21:30:41.022Z",
 "name": "Data from Network Shared Drive Mitigation",
 "description": "Identify unnecessary system utilities or potentially malicious software that may be used to collect data from a network share, and audit and/or block them by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]"
}

Parsing Custom STIX Content

Parsing custom STIX objects and/or STIX objects with custom properties
is also completed easily with
parse(). Just supply the
keyword argument allow_custom=True. When allow_custom is
specified, parse() will
attempt to convert the supplied STIX content to known STIX 2 domain
objects and/or previously defined custom STIX 2
objects. If the conversion cannot be completed (and
allow_custom is specified),
parse() will treat the
supplied STIX 2 content as valid STIX 2 objects and return them.
Warning: Specifying allow_custom may lead to critical errors if
further processing (searching, filtering, modifying etc...) of the
custom content occurs where the custom content supplied is not valid
STIX 2. This is an axiomatic possibility as the stix2 library
cannot guarantee proper processing of unknown custom STIX 2 objects that
were explicitly flagged to be allowed, and thus may not be valid.

For examples of parsing STIX 2 objects with custom STIX properties, see
Custom STIX Content: Custom
Properties

For examples of parsing defined custom STIX 2 objects, see Custom STIX
Content: Custom STIX Object
Types

For retrieving STIX 2 content from a source (e.g. file system, TAXII)
that may possibly have custom STIX 2 content unknown to the user, the
user can create a STIX 2 DataStore/Source with the flag
allow_custom=True. As mentioned, this will configure the
DataStore/Source to allow for unknown STIX 2 content to be returned
(albeit not converted to full STIX 2 domain objects and properties); the
stix2 library may preclude processing the unknown content, if the
content is not valid or actual STIX 2 domain objects and properties.

In []:

from taxii2client import Collection
from stix2 import CompositeDataSource, FileSystemSource, TAXIICollectionSource

to allow for the retrieval of unknown custom STIX2 content,
just create *Stores/*Sources with the 'allow_custom' flag

create FileSystemStore
fs = FileSystemSource("/path/to/stix2_data/", allow_custom=True)

create TAXIICollectionSource
colxn = Collection('http://taxii_url')
ts = TAXIICollectionSource(colxn, allow_custom=True)

Serializing STIX Objects

The string representation of all STIX classes is a valid STIX JSON
object.

In [3]:

from stix2 import Indicator

indicator = Indicator(name="File hash for malware variant",
 labels=["malicious-activity"],
 pattern="[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']")

print(str(indicator))

Out[3]:

{
 "type": "indicator",
 "id": "indicator--4336ace8-d985-413a-8e32-f749ba268dc3",
 "created": "2018-04-05T20:01:20.012Z",
 "modified": "2018-04-05T20:01:20.012Z",
 "name": "File hash for malware variant",
 "pattern": "[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']",
 "valid_from": "2018-04-05T20:01:20.012209Z",
 "labels": [
 "malicious-activity"
]
}

However, the string representation can be slow, as it sorts properties
to be in a more readable order. If you need performance and don’t care
about the human-readability of the output, use the object’s
serialize() function:

In [4]:

print(indicator.serialize())

Out[4]:

{"name": "File hash for malware variant", "labels": ["malicious-activity"], "pattern": "[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']", "type": "indicator", "id": "indicator--4336ace8-d985-413a-8e32-f749ba268dc3", "created": "2018-04-05T20:01:20.012Z", "modified": "2018-04-05T20:01:20.012Z", "valid_from": "2018-04-05T20:01:20.012209Z"}

If you need performance but also need human-readable output, you can
pass the indent keyword argument to serialize():

In [5]:

print(indicator.serialize(indent=4))

Out[5]:

{
 "name": "File hash for malware variant",
 "labels": [
 "malicious-activity"
],
 "pattern": "[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']",
 "type": "indicator",
 "id": "indicator--4336ace8-d985-413a-8e32-f749ba268dc3",
 "created": "2018-04-05T20:01:20.012Z",
 "modified": "2018-04-05T20:01:20.012Z",
 "valid_from": "2018-04-05T20:01:20.012209Z"
}

The only difference between this and the string representation from
using str() is that this will not sort the keys. This works because
the keyword arguments are passed to json.dumps() internally.

TAXIICollection

The TAXIICollection suite contains
TAXIICollectionStore,
TAXIICollectionSource,
and
TAXIICollectionSink.
TAXIICollectionStore
pushes and retrieves STIX content to local/remote TAXII Collection(s).
TAXIICollectionSource
retrieves STIX content from local/remote TAXII Collection(s).
TAXIICollectionSink
pushes STIX content to local/remote TAXII Collection(s). Each of the
interfaces is designed to be bound to a Collection from the
taxii2client [https://github.com/oasis-open/cti-taxii-client]
library (taxii2client.Collection), where all
TAXIICollection API
calls will be executed through that Collection instance.

A note on TAXII2 searching/filtering of STIX content: TAXII2 server
implementations natively support searching on the STIX2 object
properties: id, type and version; API requests made to TAXII2 can
contain filter arguments for those 3 properties. However, the
TAXIICollection suite
supports searching on all STIX2 common object properties (see
Filters documentation
for full listing). This works simply by augmenting the filtering that is
done remotely at the TAXII2 server instance.
TAXIICollection will
seperate any supplied queries into TAXII supported filters and
non-supported filters. During a
TAXIICollection API
call, TAXII2 supported filters get inserted into the TAXII2 server
request (to be evaluated at the server). The rest of the filters are
kept locally and then applied to the STIX2 content that is returned from
the TAXII2 server, before being returned from the
TAXIICollection API
call.

TAXIICollection API

TAXIICollection Examples

TAXIICollectionSource

In [18]:

from stix2 import TAXIICollectionSource
from taxii2client import Collection

establish TAXII2 Collection instance
collection = Collection("http://127.0.0.1:5000/trustgroup1/collections/91a7b528-80eb-42ed-a74d-c6fbd5a26116/", user="admin", password="Password0")
supply the TAXII2 collection to TAXIICollection
tc_source = TAXIICollectionSource(collection)

#retrieve STIX objects by id
stix_obj = tc_source.get("malware--fdd60b30-b67c-11e3-b0b9-f01faf20d111")
stix_obj_versions = tc_source.all_versions("indicator--a932fcc6-e032-176c-126f-cb970a5a1ade")

#for visual purposes
print(stix_obj)
print("-------")
for so in stix_obj_versions:
 print(so)

{
 "type": "malware",
 "id": "malware--fdd60b30-b67c-11e3-b0b9-f01faf20d111",
 "created": "2017-01-27T13:49:53.997Z",
 "modified": "2017-01-27T13:49:53.997Z",
 "name": "Poison Ivy",
 "description": "Poison Ivy",
 "labels": [
 "remote-access-trojan"
]
}

{
 "type": "indicator",
 "id": "indicator--a932fcc6-e032-176c-126f-cb970a5a1ade",
 "created": "2014-05-08T09:00:00.000Z",
 "modified": "2014-05-08T09:00:00.000Z",
 "name": "File hash for Poison Ivy variant",
 "pattern": "[file:hashes.'SHA-256' = 'ef537f25c895bfa782526529a9b63d97aa631564d5d789c2b765448c8635fb6c']",
 "valid_from": "2014-05-08T09:00:00Z",
 "labels": [
 "file-hash-watchlist"
]
}

In [20]:

from stix2 import Filter

retrieve multiple object from TAXIICollectionSource
by using filters
f1 = Filter("type","=", "indicator")

indicators = tc_source.query([f1])

#for visual purposes
for indicator in indicators:
 print(indicator)

{
 "type": "indicator",
 "id": "indicator--a932fcc6-e032-176c-126f-cb970a5a1ade",
 "created": "2014-05-08T09:00:00.000Z",
 "modified": "2014-05-08T09:00:00.000Z",
 "name": "File hash for Poison Ivy variant",
 "pattern": "[file:hashes.'SHA-256' = 'ef537f25c895bfa782526529a9b63d97aa631564d5d789c2b765448c8635fb6c']",
 "valid_from": "2014-05-08T09:00:00Z",
 "labels": [
 "file-hash-watchlist"
]
}

TAXIICollectionSink

In []:

from stix2 import TAXIICollectionSink, ThreatActor

#create TAXIICollectionSINK and push STIX content to it
tc_sink = TAXIICollectionSink(collection)

create new STIX threat-actor
ta = ThreatActor(name="Teddy Bear",
 labels=["nation-state"],
 sophistication="innovator",
 resource_level="government",
 goals=[
 "compromising environment NGOs",
 "water-hole attacks geared towards energy sector",
])

tc_sink.add(ta)

TAXIICollectionStore

In [19]:

from stix2 import TAXIICollectionStore

create TAXIICollectionStore - note the same collection instance can
be used for the store
tc_store = TAXIICollectionStore(collection)

retrieve STIX object by id from TAXII Collection through
TAXIICollectionStore
stix_obj2 = tc_source.get("malware--fdd60b30-b67c-11e3-b0b9-f01faf20d111")

print(stix_obj2)

{
 "type": "malware",
 "id": "malware--fdd60b30-b67c-11e3-b0b9-f01faf20d111",
 "created": "2017-01-27T13:49:53.997Z",
 "modified": "2017-01-27T13:49:53.997Z",
 "name": "Poison Ivy",
 "description": "Poison Ivy",
 "labels": [
 "remote-access-trojan"
]
}

In []:

from stix2 import indicator

add STIX object to TAXIICollectionStore
ind = Indicator(description="Smokey Bear implant",
 labels=["malicious-activity"],
 pattern="[file:hashes.'SHA-256' = '09c7e05a39a59428743635242e4a867c932140a909f12a1e54fa7ee6a440c73b']")

tc_store.add(ind)

Bug and Workaround

You may get an error similar to the following when adding STIX objects
to a TAXIICollectionStore or TAXIICollectionSink:

TypeError: Object of type ThreatActor is not JSON serializable

This is a known bug and we are working to fix it. For more information,
see this GitHub
issue [https://github.com/oasis-open/cti-python-stix2/issues/125] In
the meantime, try this workaround:

In []:

tc_sink.add(json.loads(Bundle(ta).serialize()))

Or bypass the TAXIICollection altogether and interact with the
collection itself:

In []:

collection.add_objects(json.loads(Bundle(ta).serialize()))

Technical Specification Support

How imports work

Imports can be used in different ways depending on the use case and
support levels.

People who want to support the latest version of STIX 2.X without having
to make changes, can implicitly use the latest version:

In []:

import stix2

stix2.Indicator()

or,

In []:

from stix2 import Indicator

Indicator()

People who want to use an explicit version:

In []:

import stix2.v20

stix2.v20.Indicator()

or,

In []:

from stix2.v20 import Indicator

Indicator()

or even,

In []:

import stix2.v20 as stix2

stix2.Indicator()

The last option makes it easy to update to a new version in one place
per file, once you’ve made the deliberate action to do this.

People who want to use multiple versions in a single file:

In []:

import stix2

stix2.v20.Indicator()
stix2.v21.Indicator()

or,

In []:

from stix2 import v20, v21

v20.Indicator()
v21.Indicator()

or (less preferred):

In []:

from stix2.v20 import Indicator as Indicator_v20
from stix2.v21 import Indicator as Indicator_v21

Indicator_v20()
Indicator_v21()

How parsing works

If the version positional argument is not provided. The data will be
parsed using the latest version of STIX 2.X supported by the stix2
library.

You can lock your parse()
method to a specific STIX version by:

In [2]:

from stix2 import parse

indicator = parse("""{
 "type": "indicator",
 "id": "indicator--dbcbd659-c927-4f9a-994f-0a2632274394",
 "created": "2017-09-26T23:33:39.829Z",
 "modified": "2017-09-26T23:33:39.829Z",
 "labels": [
 "malicious-activity"
],
 "name": "File hash for malware variant",
 "pattern": "[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']",
 "valid_from": "2017-09-26T23:33:39.829952Z"
}""", version="2.0")
print(indicator)

Out[2]:

{
 "type": "indicator",
 "id": "indicator--dbcbd659-c927-4f9a-994f-0a2632274394",
 "created": "2017-09-26T23:33:39.829Z",
 "modified": "2017-09-26T23:33:39.829Z",
 "name": "File hash for malware variant",
 "pattern": "[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']",
 "valid_from": "2017-09-26T23:33:39.829952Z",
 "labels": [
 "malicious-activity"
]
}

Keep in mind that if a 2.1 or higher object is parsed, the operation
will fail.

How custom content works

CustomObject,
CustomObservable,
CustomMarking
and
CustomExtension
must be registered explicitly by STIX version. This is a design decision
since properties or requirements may change as the STIX Technical
Specification advances.

You can perform this by:

In []:

import stix2

Make my custom observable available in STIX 2.0
@stix2.v20.CustomObservable('x-new-object-type',
 (("prop", stix2.properties.BooleanProperty())))
class NewObject2(object):
 pass

Make my custom observable available in STIX 2.1
@stix2.v21.CustomObservable('x-new-object-type',
 (("prop", stix2.properties.BooleanProperty())))
class NewObject2(object):
 pass

Versioning

To create a new version of an existing object, specify the property(ies)
you want to change and their new values:

In [4]:

from stix2 import Indicator

indicator = Indicator(created="2016-01-01T08:00:00.000Z",
 name="File hash for suspicious file",
 labels=["anomalous-activity"],
 pattern="[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']")

indicator2 = indicator.new_version(name="File hash for Foobar malware",
 labels=["malicious-activity"])
print(indicator2)

Out[4]:

{
 "type": "indicator",
 "id": "indicator--dd052ff6-e404-444b-beb9-eae96d1e79ea",
 "created": "2016-01-01T08:00:00.000Z",
 "modified": "2018-04-05T20:02:51.161Z",
 "name": "File hash for Foobar malware",
 "pattern": "[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']",
 "valid_from": "2018-04-05T20:02:51.138312Z",
 "labels": [
 "malicious-activity"
]
}

The modified time will be updated to the current time unless you provide
a specific value as a keyword argument. Note that you can’t change the
type, id, or created properties.

In [5]:

indicator.new_version(id="indicator--cc42e358-8b9b-493c-9646-6ecd73b41c21")

UnmodifiablePropertyError: These properties cannot be changed when making a new version: id.

To revoke an object:

In [6]:

indicator2 = indicator2.revoke()
print(indicator2)

Out[6]:

{
 "type": "indicator",
 "id": "indicator--dd052ff6-e404-444b-beb9-eae96d1e79ea",
 "created": "2016-01-01T08:00:00.000Z",
 "modified": "2018-04-05T20:02:54.704Z",
 "name": "File hash for Foobar malware",
 "pattern": "[file:hashes.md5 = 'd41d8cd98f00b204e9800998ecf8427e']",
 "valid_from": "2018-04-05T20:02:51.138312Z",
 "revoked": true,
 "labels": [
 "malicious-activity"
]
}

Using The Workbench

The Workbench API hides most of the
complexity of the rest of the library to make it easy to interact with
STIX data. To use it, just import everything from stix2.workbench:

In [3]:

from stix2.workbench import *

Retrieving STIX Data

To get some STIX data to work with, let’s set up a DataSource and add it
to our workbench.

In [4]:

from taxii2client import Collection

collection = Collection("http://127.0.0.1:5000/trustgroup1/collections/91a7b528-80eb-42ed-a74d-c6fbd5a26116/", user="admin", password="Password0")
tc_source = TAXIICollectionSource(collection)
add_data_source(tc_source)

Now we can get all of the indicators from the data source.

In [5]:

response = indicators()

Similar functions are available for the other STIX Object types. See the
full list
here.

If you want to only retrieve some indicators, you can pass in one or
more Filters. This
example finds all the indicators created by a specific identity:

In [6]:

response = indicators(filters=Filter('created_by_ref', '=', 'identity--adede3e8-bf44-4e6f-b3c9-1958cbc3b188'))

The objects returned let you easily traverse their relationships. Get
all Relationship objects involving that object with
.relationships(), all other objects related to this object with
.related(), and the Identity object for the creator of the object
(if one exists) with .created_by(). For full details on these
methods and their arguments, see the Workbench
API documentation.

In [7]:

for i in indicators():
 for rel in i.relationships():
 print(rel.source_ref)
 print(rel.relationship_type)
 print(rel.target_ref)

Out[7]:

indicator--a932fcc6-e032-176c-126f-cb970a5a1ade

Out[7]:

indicates

Out[7]:

malware--fdd60b30-b67c-11e3-b0b9-f01faf20d111

In [8]:

for i in indicators():
 for obj in i.related():
 print(obj)

Out[8]:

{
 "type": "malware",
 "id": "malware--fdd60b30-b67c-11e3-b0b9-f01faf20d111",
 "created": "2017-01-27T13:49:53.997Z",
 "modified": "2017-01-27T13:49:53.997Z",
 "name": "Poison Ivy",
 "description": "Poison Ivy",
 "labels": [
 "remote-access-trojan"
]
}

If there are a lot of related objects, you can narrow it down by passing
in one or more
Filters just as
before. For example, if we want to get only the indicators related to a
specific piece of malware (and not any entities that use it or are
targeted by it):

In [9]:

malware = get('malware--fdd60b30-b67c-11e3-b0b9-f01faf20d111')
indicator = malware.related(filters=Filter('type', '=', 'indicator'))
print(indicator[0])

Out[9]:

{
 "type": "indicator",
 "id": "indicator--a932fcc6-e032-176c-126f-cb970a5a1ade",
 "created": "2014-05-08T09:00:00.000Z",
 "modified": "2014-05-08T09:00:00.000Z",
 "name": "File hash for Poison Ivy variant",
 "pattern": "[file:hashes.'SHA-256' = 'ef537f25c895bfa782526529a9b63d97aa631564d5d789c2b765448c8635fb6c']",
 "valid_from": "2014-05-08T09:00:00Z",
 "labels": [
 "file-hash-watchlist"
]
}

Creating STIX Data

To create a STIX object, just use that object’s class constructor. Once
it’s created, add it to the workbench with
save().

In [10]:

identity = Identity(name="ACME Threat Intel Co.", identity_class="organization")
save(identity)

You can also set defaults for certain properties when creating objects.
For example, let’s set the default creator to be the identity object we
just created:

In [11]:

set_default_creator(identity)

Now when we create an indicator (or any other STIX Domain Object), it
will automatically have the right create_by_ref value.

In [12]:

indicator = Indicator(labels=["malicious-activity"], pattern="[file:hashes.MD5 = 'd41d8cd98f00b204e9800998ecf8427e']")
save(indicator)

indicator_creator = get(indicator.created_by_ref)
print(indicator_creator.name)

Out[12]:

ACME Threat Intel Co.

Defaults can also be set for the created
timestamp,
external
references
and object marking
references.

Warning:

The workbench layer replaces STIX Object classes with special versions
of them that use “wrappers” to provide extra functionality. Because of
this, we recommend that you either use the workbench layer or the rest
of the library, but not both. In other words, don’t import from both
stix2.workbench and any other submodules of stix2.

API Reference

This section of documentation contains information on all of the classes and
functions in the stix2 API, as given by the package’s docstrings.

Note

All the classes and functions detailed in the pages below are importable
directly from stix2. See also:
How imports work.

Python APIs for STIX 2.

	core
	STIX 2.0 Objects that are neither SDOs nor SROs.

	datastore
	Python STIX 2.0 DataStore API.

	environment
	Python STIX 2.0 Environment API.

	exceptions
	STIX 2 error classes.

	markings
	Functions for working with STIX 2 Data Markings.

	patterns
	Classes to aid in working with the STIX 2 patterning language.

	properties
	Classes for representing properties of STIX Objects and Cyber Observables.

	utils
	Utility functions and classes for the stix2 library.

	workbench
	Functions and class wrappers for interacting with STIX data at a high level.

	v20.common
	STIX 2 Common Data Types and Properties.

	v20.observables
	STIX 2.0 Cyber Observable Objects.

	v20.sdo
	STIX 2.0 Domain Objects.

	v20.sro
	STIX 2.0 Relationship Objects.

core

STIX 2.0 Objects that are neither SDOs nor SROs.

	
class Bundle(*args, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part1-stix-core/stix-v2.0-cs01-part1-stix-core.html#_Toc496709293].

	Properties:	
	id (ID)

	spec_version (**)

	objects (List of STIX Objects)

	
class STIXObjectProperty(allow_custom=False)

	
	
clean(value)

	

	
dict_to_stix2(stix_dict, allow_custom=False, version=None)

	convert dictionary to full python-stix2 object

	Parameters:	
	stix_dict (dict) – a python dictionary of a STIX object
that (presumably) is semantically correct to be parsed
into a full python-stix2 obj

	allow_custom (bool) – Whether to allow custom properties as well unknown
custom objects. Note that unknown custom objects cannot be parsed
into STIX objects, and will be returned as is. Default: False.

	Returns:	An instantiated Python STIX object

WARNING: ‘allow_custom=True’ will allow for the return of any supplied STIX
dict(s) that cannot be found to map to any known STIX object types (both STIX2
domain objects or defined custom STIX2 objects); NO validation is done. This is
done to allow the processing of possibly unknown custom STIX objects (example
scenario: I need to query a third-party TAXII endpoint that could provide custom
STIX objects that I dont know about ahead of time)

	
parse(data, allow_custom=False, version=None)

	Convert a string, dict or file-like object into a STIX object.

	Parameters:	
	data (str, dict, file-like object) – The STIX 2 content to be parsed.

	allow_custom (bool) – Whether to allow custom properties as well unknown
custom objects. Note that unknown custom objects cannot be parsed
into STIX objects, and will be returned as is. Default: False.

	version (str) – Which STIX2 version to use. (e.g. “2.0”, “2.1”). If
None, use latest version.

	Returns:	An instantiated Python STIX object.

	WARNING: ‘allow_custom=True’ will allow for the return of any supplied STIX

	dict(s) that cannot be found to map to any known STIX object types (both STIX2
domain objects or defined custom STIX2 objects); NO validation is done. This is
done to allow the processing of possibly unknown custom STIX objects (example
scenario: I need to query a third-party TAXII endpoint that could provide custom
STIX objects that I dont know about ahead of time)

datastore

Python STIX 2.0 DataStore API.

	filesystem
	Python STIX 2.0 FileSystem Source/Sink

	filters
	Filters for Python STIX 2.0 DataSources, DataSinks, DataStores

	memory
	Python STIX 2.0 Memory Source/Sink

	taxii
	Python STIX 2.x TAXIICollectionStore

	
class CompositeDataSource

	Controller for all the attached DataSources.

A user can have a single CompositeDataSource as an interface
the a set of DataSources. When an API call is made to the
CompositeDataSource, it is delegated to each of the (real)
DataSources that are attached to it.

DataSources can be attached to CompositeDataSource for a variety
of reasons, e.g. common filters, organization, less API calls.

	
data_sources

	list – A dictionary of DataSource objects; to be
controlled and used by the Data Source Controller object.

	
add_data_source(data_source)

	Attach a DataSource to CompositeDataSource instance

	Parameters:	data_source (DataSource) – a stix2.DataSource to attach
to the CompositeDataSource

	
add_data_sources(data_sources)

	Attach list of DataSources to CompositeDataSource instance

	Parameters:	data_sources (list) – stix2.DataSources to attach to
CompositeDataSource

	
all_versions(stix_id, _composite_filters=None)

	Retrieve all versions of a STIX object by STIX ID.

Federated all_versions retrieve method - iterates through all
DataSources defined in “data_sources”.

A composite data source will pass its attached filters to
each configured data source, pushing filtering to them to handle.

	Parameters:	
	stix_id (str) – id of the STIX objects to retrieve.

	_composite_filters (FilterSet) – a collection of filters passed from a
CompositeDataSource (i.e. if this CompositeDataSource is
attached to a parent CompositeDataSource), not user supplied.

	Returns:	list – The STIX objects that have the specified id.

	
get(stix_id, _composite_filters=None)

	Retrieve STIX object by STIX ID

Federated retrieve method, iterates through all DataSources
defined in the “data_sources” parameter. Each data source has a
specific API retrieve-like function and associated parameters. This
function does a federated retrieval and consolidation of the data
returned from all the STIX data sources.

A composite data source will pass its attached filters to
each configured data source, pushing filtering to them to handle.

	Parameters:	
	stix_id (str) – the id of the STIX object to retrieve.

	_composite_filters (FilterSet) – a collection of filters passed from a
CompositeDataSource (i.e. if this CompositeDataSource is attached
to another parent CompositeDataSource), not user supplied.

	Returns:	stix_obj – The STIX object to be returned.

	
get_all_data_sources()

	

	
has_data_sources()

	

	
query(query=None, _composite_filters=None)

	Retrieve STIX objects that match a query.

Federate the query to all DataSources attached to the
Composite Data Source.

	Parameters:	
	query (list) – list of filters to search on.

	_composite_filters (FilterSet) – a collection of filters passed from a
CompositeDataSource (i.e. if this CompositeDataSource is
attached to a parent CompositeDataSource), not user supplied.

	Returns:	list – The STIX objects to be returned.

	
related_to(*args, **kwargs)

	Retrieve STIX Objects that have a Relationship involving the given
STIX object.

Only one of source_only and target_only may be True.

Federated related objects method - iterates through all
DataSources defined in “data_sources”.

	Parameters:	
	obj (STIX object OR dict OR str) – The STIX object (or its ID) whose
related objects will be looked up.

	relationship_type (str) – Only retrieve objects related by this
Relationships type. If None, all related objects will be
returned, regardless of type.

	source_only (bool) – Only examine Relationships for which this
object is the source_ref. Default: False.

	target_only (bool) – Only examine Relationships for which this
object is the target_ref. Default: False.

	filters (list) – list of additional filters the related objects must
match.

	Returns:	list – The STIX objects related to the given STIX object.

	
relationships(*args, **kwargs)

	Retrieve Relationships involving the given STIX object.

Only one of source_only and target_only may be True.

Federated relationships retrieve method - iterates through all
DataSources defined in “data_sources”.

	Parameters:	
	obj (STIX object OR dict OR str) – The STIX object (or its ID) whose
relationships will be looked up.

	relationship_type (str) – Only retrieve Relationships of this type.
If None, all relationships will be returned, regardless of type.

	source_only (bool) – Only retrieve Relationships for which this
object is the source_ref. Default: False.

	target_only (bool) – Only retrieve Relationships for which this
object is the target_ref. Default: False.

	Returns:	list – The Relationship objects involving the given STIX object.

	
remove_data_source(data_source_id)

	Remove DataSource from the CompositeDataSource instance

	Parameters:	data_source_id (str) – DataSource IDs.

	
remove_data_sources(data_source_ids)

	Remove DataSources from the CompositeDataSource instance

	Parameters:	data_source_ids (list) – DataSource IDs

	
class DataSink

	An implementer will create a concrete subclass from
this class for the specific DataSink.

	
id

	str – A unique UUIDv4 to identify this DataSink.

	
add(stix_objs)

	Method for storing STIX objects.

Implement: Specific data sink API calls, processing,
functionality required for adding data to the sink

	Parameters:	stix_objs (list) – a list of STIX objects (where each object is a
STIX object)

	
class DataSource

	An implementer will create a concrete subclass from
this class for the specific DataSource.

	
id

	str – A unique UUIDv4 to identify this DataSource.

	
filters

	FilterSet – A collection of filters attached to this DataSource.

	
all_versions(stix_id)

	Implement: Similar to get() except returns list of all object versions
of the specified “id”. In addition, implement the specific data
source API calls, processing, functionality required for retrieving
data from the data source.

	Parameters:	stix_id (str) – The id of the STIX 2.0 object to retrieve. Should
return a list of objects, all the versions of the object
specified by the “id”.

	Returns:	list – All versions of the specified STIX object.

	
creator_of(obj)

	Retrieve the Identity refered to by the object’s created_by_ref.

	Parameters:	obj – The STIX object whose created_by_ref property will be looked
up.

	Returns:	The STIX object’s creator, or None, if the object contains no
created_by_ref property or the object’s creator cannot be found.

	
get(stix_id)

	Implement: Specific data source API calls, processing,
functionality required for retrieving data from the data source

	Parameters:	stix_id (str) – the id of the STIX 2.0 object to retrieve. Should
return a single object, the most recent version of the object
specified by the “id”.

	Returns:	stix_obj – The STIX object.

	
query(query=None)

	Implement: The specific data source API calls, processing,
functionality required for retrieving query from the data source

	Parameters:	query (list) – a list of filters (which collectively are the query)
to conduct search on.

	Returns:	list – The STIX objects that matched the query.

	
related_to(obj, relationship_type=None, source_only=False, target_only=False, filters=None)

	Retrieve STIX Objects that have a Relationship involving the given
STIX object.

Only one of source_only and target_only may be True.

	Parameters:	
	obj (STIX object OR dict OR str) – The STIX object (or its ID) whose
related objects will be looked up.

	relationship_type (str) – Only retrieve objects related by this
Relationships type. If None, all related objects will be
returned, regardless of type.

	source_only (bool) – Only examine Relationships for which this
object is the source_ref. Default: False.

	target_only (bool) – Only examine Relationships for which this
object is the target_ref. Default: False.

	filters (list) – list of additional filters the related objects must
match.

	Returns:	list – The STIX objects related to the given STIX object.

	
relationships(obj, relationship_type=None, source_only=False, target_only=False)

	Retrieve Relationships involving the given STIX object.

Only one of source_only and target_only may be True.

	Parameters:	
	obj (STIX object OR dict OR str) – The STIX object (or its ID) whose
relationships will be looked up.

	relationship_type (str) – Only retrieve Relationships of this type.
If None, all relationships will be returned, regardless of type.

	source_only (bool) – Only retrieve Relationships for which this
object is the source_ref. Default: False.

	target_only (bool) – Only retrieve Relationships for which this
object is the target_ref. Default: False.

	Returns:	list – The Relationship objects involving the given STIX object.

	
class DataStoreMixin(source=None, sink=None)

	Provides mechanisms for storing and retrieving STIX data. The specific
behavior can be customized by subclasses.

	Parameters:	
	source (DataSource) – An existing DataSource to use
as this DataStore’s DataSource component

	sink (DataSink) – An existing DataSink to use
as this DataStore’s DataSink component

	
id

	str – A unique UUIDv4 to identify this DataStore.

	
source

	DataSource – An object that implements DataSource class.

	
sink

	DataSink – An object that implements DataSink class.

	
add(*args, **kwargs)

	Method for storing STIX objects.

Defines custom behavior before storing STIX objects using the
appropriate method call on the associated DataSink.

	Parameters:	stix_objs (list) – a list of STIX objects

	
all_versions(*args, **kwargs)

	Retrieve all versions of a single STIX object by ID.

Translate all_versions() call to the appropriate DataSource call.

	Parameters:	stix_id (str) – the id of the STIX object to retrieve.

	Returns:	list – All versions of the specified STIX object.

	
creator_of(*args, **kwargs)

	Retrieve the Identity refered to by the object’s created_by_ref.

Translate creator_of() call to the appropriate DataSource call.

	Parameters:	obj – The STIX object whose created_by_ref property will be looked
up.

	Returns:	The STIX object’s creator, or None, if the object contains no
created_by_ref property or the object’s creator cannot be found.

	
get(*args, **kwargs)

	Retrieve the most recent version of a single STIX object by ID.

Translate get() call to the appropriate DataSource call.

	Parameters:	stix_id (str) – the id of the STIX object to retrieve.

	Returns:	stix_obj –
	the single most recent version of the STIX

	object specified by the “id”.

	
query(*args, **kwargs)

	Retrieve STIX objects matching a set of filters.

Translate query() call to the appropriate DataSource call.

	Parameters:	query (list) – a list of filters (which collectively are the query)
to conduct search on.

	Returns:	list – The STIX objects matching the query.

	
related_to(*args, **kwargs)

	Retrieve STIX Objects that have a Relationship involving the given
STIX object.

Translate related_to() call to the appropriate DataSource call.

Only one of source_only and target_only may be True.

	Parameters:	
	obj (STIX object OR dict OR str) – The STIX object (or its ID) whose
related objects will be looked up.

	relationship_type (str) – Only retrieve objects related by this
Relationships type. If None, all related objects will be
returned, regardless of type.

	source_only (bool) – Only examine Relationships for which this
object is the source_ref. Default: False.

	target_only (bool) – Only examine Relationships for which this
object is the target_ref. Default: False.

	filters (list) – list of additional filters the related objects must
match.

	Returns:	list – The STIX objects related to the given STIX object.

	
relationships(*args, **kwargs)

	Retrieve Relationships involving the given STIX object.

Translate relationships() call to the appropriate DataSource call.

Only one of source_only and target_only may be True.

	Parameters:	
	obj (STIX object OR dict OR str) – The STIX object (or its ID) whose
relationships will be looked up.

	relationship_type (str) – Only retrieve Relationships of this type.
If None, all relationships will be returned, regardless of type.

	source_only (bool) – Only retrieve Relationships for which this
object is the source_ref. Default: False.

	target_only (bool) – Only retrieve Relationships for which this
object is the target_ref. Default: False.

	Returns:	list – The Relationship objects involving the given STIX object.

	
make_id()

	

filesystem

Python STIX 2.0 FileSystem Source/Sink

	
class FileSystemSink(stix_dir, allow_custom=False, bundlify=False)

	Interface for adding/pushing STIX objects to file directory of STIX
objects.

Can be paired with a FileSystemSource, together as the two
components of a FileSystemStore.

	Parameters:	
	stix_dir (str) – path to directory of STIX objects.

	allow_custom (bool) – Whether to allow custom STIX content to be
added to the FileSystemSource. Default: False

	bundlify (bool) – Whether to wrap objects in bundles when saving them.
Default: False.

	
add(stix_data=None, version=None)

	Add STIX objects to file directory.

	Parameters:	
	stix_data (STIX object OR dict OR str OR list) – valid STIX 2.0 content
in a STIX object (or list of), dict (or list of), or a STIX 2.0
json encoded string.

	version (str) – Which STIX2 version to use. (e.g. “2.0”, “2.1”). If
None, use latest version.

Note

stix_data can be a Bundle object, but each object in it will be
saved separately; you will be able to retrieve any of the objects
the Bundle contained, but not the Bundle itself.

	
stix_dir

	

	
class FileSystemSource(stix_dir, allow_custom=True)

	Interface for searching/retrieving STIX objects from a STIX object file
directory.

Can be paired with a FileSystemSink, together as the two
components of a FileSystemStore.

	Parameters:	
	stix_dir (str) – path to directory of STIX objects

	allow_custom (bool) – Whether to allow custom STIX content to be
added to the FileSystemSink. Default: True

	
all_versions(stix_id, version=None, _composite_filters=None)

	Retrieve STIX object from file directory via STIX ID, all versions.

Note: Since FileSystem sources/sinks don’t handle multiple versions
of a STIX object, this operation is unnecessary. Pass call to get().

	Parameters:	
	stix_id (str) – The STIX ID of the STIX objects to be retrieved.

	_composite_filters (FilterSet) – collection of filters passed from the parent
CompositeDataSource, not user supplied

	version (str) – Which STIX2 version to use. (e.g. “2.0”, “2.1”). If
None, use latest version.

	Returns:	(list) –

	of STIX objects that has the supplied STIX ID.

	The STIX objects are loaded from their json files, parsed into
a python STIX objects and then returned

	
get(stix_id, version=None, _composite_filters=None)

	Retrieve STIX object from file directory via STIX ID.

	Parameters:	
	stix_id (str) – The STIX ID of the STIX object to be retrieved.

	_composite_filters (FilterSet) – collection of filters passed from the parent
CompositeDataSource, not user supplied

	version (str) – Which STIX2 version to use. (e.g. “2.0”, “2.1”). If
None, use latest version.

	Returns:	(STIX object) –

	STIX object that has the supplied STIX ID.

	The STIX object is loaded from its json file, parsed into
a python STIX object and then returned

	
query(query=None, version=None, _composite_filters=None)

	Search and retrieve STIX objects based on the complete query.

A “complete query” includes the filters from the query, the filters
attached to this FileSystemSource, and any filters passed from a
CompositeDataSource (i.e. _composite_filters).

	Parameters:	
	query (list) – list of filters to search on

	_composite_filters (FilterSet) – collection of filters passed from the
CompositeDataSource, not user supplied

	version (str) – Which STIX2 version to use. (e.g. “2.0”, “2.1”). If
None, use latest version.

	Returns:	(list) –

	list of STIX objects that matches the supplied

	query. The STIX objects are loaded from their json files,
parsed into a python STIX objects and then returned.

	
stix_dir

	

	
class FileSystemStore(stix_dir, allow_custom=None, bundlify=False)

	Interface to a file directory of STIX objects.

FileSystemStore is a wrapper around a paired FileSystemSink
and FileSystemSource.

	Parameters:	
	stix_dir (str) – path to directory of STIX objects

	allow_custom (bool) – whether to allow custom STIX content to be
pushed/retrieved. Defaults to True for FileSystemSource side(retrieving data)
and False for FileSystemSink side(pushing data). However, when
parameter is supplied, it will be applied to both FileSystemSource
and FileSystemSink.

	bundlify (bool) – whether to wrap objects in bundles when saving them.
Default: False.

	
source

	FileSystemSource – FileSystemSource

	
sink

	FileSystemSink – FileSystemSink

filters

Filters for Python STIX 2.0 DataSources, DataSinks, DataStores

	
class Filter

	STIX 2 filters that support the querying functionality of STIX 2
DataStores and DataSources.

Initialized like a Python tuple.

	Parameters:	
	property (str) – filter property name, corresponds to STIX 2 object property

	op (str) – operator of the filter

	value (str) – filter property value

Example

Filter(“id”, “=”, “malware–0f862b01-99da-47cc-9bdb-db4a86a95bb1”)

	
class FilterSet(filters=None)

	Internal STIX2 class to facilitate the grouping of Filters
into sets. The primary motivation for this class came from the problem
that Filters that had a dict as a value could not be added to a Python
set as dicts are not hashable. Thus this class provides set functionality
but internally stores filters in a list.

	
add(filters=None)

	Add a Filter, FilterSet, or list of Filters to the FilterSet.

Operates like set, only adding unique stix2.Filters to the FilterSet

NOTE: method designed to be very accomodating (i.e. even accepting filters=None)
as it allows for blind calls (very useful in DataStore)

	Parameters:	filters – stix2.Filter OR list of stix2.Filter OR stix2.FilterSet

	
remove(filters=None)

	Remove a Filter, list of Filters, or FilterSet from the FilterSet.

NOTE: method designed to be very accomodating (i.e. even accepting filters=None)
as it allows for blind calls (very useful in DataStore)

	Parameters:	filters – stix2.Filter OR list of stix2.Filter or stix2.FilterSet

	
apply_common_filters(stix_objs, query)

	Evaluate filters against a set of STIX 2.0 objects.

Supports only STIX 2.0 common property properties.

	Parameters:	
	stix_objs (list) – list of STIX objects to apply the query to

	query (set) – set of filters (combined form complete query)

	Yields:	STIX objects that successfully evaluate against the query.

	
FILTER_OPS = ['=', '!=', 'in', '>', '<', '>=', '<=']

	Supported filter value types

memory

Python STIX 2.0 Memory Source/Sink

Note

Not worrying about STIX versioning. The in memory STIX data at anytime
will only hold one version of a STIX object. As such, when save() is called,
the single versions of all the STIX objects are what is written to file.

	
class MemorySink(stix_data=None, allow_custom=True, version=None, _store=False)

	Interface for adding/pushing STIX objects to an in-memory dictionary.

Designed to be paired with a MemorySource, together as the two
components of a MemoryStore.

	Parameters:	
	stix_data (dict OR list) – valid STIX 2.0 content in
bundle or a list.

	_store (bool) – whether the MemorySink is a part of a MemoryStore,
in which case “stix_data” is a direct reference to
shared memory with DataSource. Not user supplied

	allow_custom (bool) – whether to allow custom objects/properties
when exporting STIX content to file.
Default: True.

	
_data

	dict – the in-memory dict that holds STIX objects.
If part of a MemoryStore, the dict is shared with a MemorySource

	
add(stix_data, version=None)

	Add STIX objects to MemoryStore/Sink.

Adds STIX objects to an in-memory dictionary for fast lookup.
Recursive function, breaks down STIX Bundles and lists.

	Parameters:	
	stix_data (list OR dict OR STIX object) – STIX objects to be added

	version (str) – Which STIX2 version to use. (e.g. “2.0”, “2.1”). If
None, use latest version.

	
save_to_file(file_path)

	Write SITX objects from in-memory dictionary to JSON file, as a STIX
Bundle.

	Parameters:	file_path (str) – file path to write STIX data to

	
class MemorySource(stix_data=None, allow_custom=True, version=None, _store=False)

	Interface for searching/retrieving STIX objects from an in-memory
dictionary.

Designed to be paired with a MemorySink, together as the two
components of a MemoryStore.

	Parameters:	
	stix_data (dict OR list OR STIX object) – valid STIX 2.0 content in
bundle or list.

	_store (bool) – if the MemorySource is a part of a MemoryStore,
in which case “stix_data” is a direct reference to shared
memory with DataSink. Not user supplied

	allow_custom (bool) – whether to allow custom objects/properties
when importing STIX content from file.
Default: True.

	
_data

	dict – the in-memory dict that holds STIX objects.
If part of a MemoryStore, the dict is shared with a MemorySink

	
all_versions(stix_id, _composite_filters=None)

	Retrieve STIX objects from in-memory dict via STIX ID, all versions of it

Note: Since Memory sources/sinks don’t handle multiple versions of a
STIX object, this operation is unnecessary. Translate call to get().

	Parameters:	
	stix_id (str) – The STIX ID of the STIX 2 object to retrieve.

	_composite_filters (FilterSet) – collection of filters passed from the parent
CompositeDataSource, not user supplied

	Returns:	(list) –

	list of STIX objects that has the supplied ID. As the

	MemoryStore(i.e. MemorySink) adds STIX objects to memory as they
are supplied (either as python dictionary or STIX object), it
is returned in the same form as it as added

	
get(stix_id, _composite_filters=None)

	Retrieve STIX object from in-memory dict via STIX ID.

	Parameters:	
	stix_id (str) – The STIX ID of the STIX object to be retrieved.

	_composite_filters (FilterSet) – collection of filters passed from the parent
CompositeDataSource, not user supplied

	Returns:	(dict OR STIX object) –

	STIX object that has the supplied

	ID. As the MemoryStore(i.e. MemorySink) adds STIX objects to memory
as they are supplied (either as python dictionary or STIX object), it
is returned in the same form as it as added

	
load_from_file(file_path, version=None)

	Load STIX data from JSON file.

File format is expected to be a single JSON
STIX object or JSON STIX bundle.

	Parameters:	
	file_path (str) – file path to load STIX data from

	version (str) – Which STIX2 version to use. (e.g. “2.0”, “2.1”). If
None, use latest version.

	
query(query=None, _composite_filters=None)

	Search and retrieve STIX objects based on the complete query.

A “complete query” includes the filters from the query, the filters
attached to this MemorySource, and any filters passed from a
CompositeDataSource (i.e. _composite_filters).

	Parameters:	
	query (list) – list of filters to search on

	_composite_filters (FilterSet) – collection of filters passed from the
CompositeDataSource, not user supplied

	Returns:	(list) –

	list of STIX objects that matches the supplied

	query. As the MemoryStore(i.e. MemorySink) adds STIX objects to memory
as they are supplied (either as python dictionary or STIX object), it
is returned in the same form as it as added.

	
class MemoryStore(stix_data=None, allow_custom=True, version=None)

	Interface to an in-memory dictionary of STIX objects.

MemoryStore is a wrapper around a paired MemorySink and MemorySource.

Note: It doesn’t make sense to create a MemoryStore by passing
in existing MemorySource and MemorySink because there could
be data concurrency issues. As well, just as easy to create new MemoryStore.

	Parameters:	
	stix_data (list OR dict OR STIX object) – STIX content to be added

	allow_custom (bool) – whether to allow custom STIX content.
Only applied when export/input functions called, i.e.
load_from_file() and save_to_file(). Defaults to True.

	version (str) – Which STIX2 version to use. (e.g. “2.0”, “2.1”). If
None, use latest version.

	
_data

	dict – the in-memory dict that holds STIX objects

	
source

	MemorySource – MemorySource

	
sink

	MemorySink – MemorySink

	
load_from_file(*args, **kwargs)

	Load STIX data from JSON file.

File format is expected to be a single JSON
STIX object or JSON STIX bundle.

	Parameters:	
	file_path (str) – file path to load STIX data from

	version (str) – Which STIX2 version to use. (e.g. “2.0”, “2.1”). If
None, use latest version.

	
save_to_file(*args, **kwargs)

	Write SITX objects from in-memory dictionary to JSON file, as a STIX
Bundle.

	Parameters:	file_path (str) – file path to write STIX data to

taxii

Python STIX 2.x TAXIICollectionStore

	
class TAXIICollectionSink(collection, allow_custom=False)

	Provides an interface for pushing STIX objects to a local/remote
TAXII Collection endpoint.

	Parameters:	
	collection (taxii2.Collection) – TAXII2 Collection instance

	allow_custom (bool) – Whether to allow custom STIX content to be
added to the TAXIICollectionSink. Default: False

	
add(stix_data, version=None)

	Add/push STIX content to TAXII Collection endpoint

	Parameters:	
	stix_data (STIX object OR dict OR str OR list) – valid STIX 2.0 content
in a STIX object (or Bundle), STIX onject dict (or Bundle dict), or a STIX 2.0
json encoded string, or list of any of the following

	version (str) – Which STIX2 version to use. (e.g. “2.0”, “2.1”). If
None, use latest version.

	
class TAXIICollectionSource(collection, allow_custom=True)

	Provides an interface for searching/retrieving STIX objects
from a local/remote TAXII Collection endpoint.

	Parameters:	
	collection (taxii2.Collection) – TAXII Collection instance

	allow_custom (bool) – Whether to allow custom STIX content to be
added to the FileSystemSink. Default: True

	
all_versions(stix_id, version=None, _composite_filters=None)

	Retrieve STIX object from local/remote TAXII Collection
endpoint, all versions of it

	Parameters:	
	stix_id (str) – The STIX ID of the STIX objects to be retrieved.

	_composite_filters (FilterSet) – collection of filters passed from the parent
CompositeDataSource, not user supplied

	version (str) – Which STIX2 version to use. (e.g. “2.0”, “2.1”). If
None, use latest version.

	Returns:	(see query() as all_versions() is just a wrapper)

	
get(stix_id, version=None, _composite_filters=None)

	Retrieve STIX object from local/remote STIX Collection
endpoint.

	Parameters:	
	stix_id (str) – The STIX ID of the STIX object to be retrieved.

	_composite_filters (FilterSet) – collection of filters passed from the parent
CompositeDataSource, not user supplied

	version (str) – Which STIX2 version to use. (e.g. “2.0”, “2.1”). If
None, use latest version.

	Returns:	(STIX object) –

	STIX object that has the supplied STIX ID.

	The STIX object is received from TAXII has dict, parsed into
a python STIX object and then returned

	
query(query=None, version=None, _composite_filters=None)

	Search and retreive STIX objects based on the complete query

A “complete query” includes the filters from the query, the filters
attached to MemorySource, and any filters passed from a
CompositeDataSource (i.e. _composite_filters)

	Parameters:	
	query (list) – list of filters to search on

	_composite_filters (FilterSet) – collection of filters passed from the
CompositeDataSource, not user supplied

	version (str) – Which STIX2 version to use. (e.g. “2.0”, “2.1”). If
None, use latest version.

	Returns:	(list) –

	list of STIX objects that matches the supplied

	query. The STIX objects are received from TAXII as dicts,
parsed into python STIX objects and then returned.

	
class TAXIICollectionStore(collection, allow_custom=None)

	Provides an interface to a local/remote TAXII Collection
of STIX data. TAXIICollectionStore is a wrapper
around a paired TAXIICollectionSink and TAXIICollectionSource.

	Parameters:	
	collection (taxii2.Collection) – TAXII Collection instance

	allow_custom (bool) – whether to allow custom STIX content to be
pushed/retrieved. Defaults to True for TAXIICollectionSource
side(retrieving data) and False for TAXIICollectionSink
side(pushing data). However, when parameter is supplied, it will
be applied to both TAXIICollectionSource/Sink.

environment

Python STIX 2.0 Environment API.

	
class Environment(factory=<stix2.environment.ObjectFactory object>, store=None, source=None, sink=None)

	Abstract away some of the nasty details of working with STIX content.

	Parameters:	
	factory (ObjectFactory, optional) – Factory for creating objects with common
defaults for certain properties.

	store (DataStore, optional) – Data store providing the source and sink for the
environment.

	source (DataSource, optional) – Source for retrieving STIX objects.

	sink (DataSink, optional) – Destination for saving STIX objects.
Invalid if store is also provided.

	
get(*args, **kwargs)

	Retrieve the most recent version of a single STIX object by ID.

Translate get() call to the appropriate DataSource call.

	Parameters:	stix_id (str) – the id of the STIX object to retrieve.

	Returns:	stix_obj –
	the single most recent version of the STIX

	object specified by the “id”.

	
all_versions(*args, **kwargs)

	Retrieve all versions of a single STIX object by ID.

Translate all_versions() call to the appropriate DataSource call.

	Parameters:	stix_id (str) – the id of the STIX object to retrieve.

	Returns:	list – All versions of the specified STIX object.

	
query(*args, **kwargs)

	Retrieve STIX objects matching a set of filters.

Translate query() call to the appropriate DataSource call.

	Parameters:	query (list) – a list of filters (which collectively are the query)
to conduct search on.

	Returns:	list – The STIX objects matching the query.

	
creator_of(*args, **kwargs)

	Retrieve the Identity refered to by the object’s created_by_ref.

Translate creator_of() call to the appropriate DataSource call.

	Parameters:	obj – The STIX object whose created_by_ref property will be looked
up.

	Returns:	The STIX object’s creator, or None, if the object contains no
created_by_ref property or the object’s creator cannot be found.

	
relationships(*args, **kwargs)

	Retrieve Relationships involving the given STIX object.

Translate relationships() call to the appropriate DataSource call.

Only one of source_only and target_only may be True.

	Parameters:	
	obj (STIX object OR dict OR str) – The STIX object (or its ID) whose
relationships will be looked up.

	relationship_type (str) – Only retrieve Relationships of this type.
If None, all relationships will be returned, regardless of type.

	source_only (bool) – Only retrieve Relationships for which this
object is the source_ref. Default: False.

	target_only (bool) – Only retrieve Relationships for which this
object is the target_ref. Default: False.

	Returns:	list – The Relationship objects involving the given STIX object.

	
related_to(*args, **kwargs)

	Retrieve STIX Objects that have a Relationship involving the given
STIX object.

Translate related_to() call to the appropriate DataSource call.

Only one of source_only and target_only may be True.

	Parameters:	
	obj (STIX object OR dict OR str) – The STIX object (or its ID) whose
related objects will be looked up.

	relationship_type (str) – Only retrieve objects related by this
Relationships type. If None, all related objects will be
returned, regardless of type.

	source_only (bool) – Only examine Relationships for which this
object is the source_ref. Default: False.

	target_only (bool) – Only examine Relationships for which this
object is the target_ref. Default: False.

	filters (list) – list of additional filters the related objects must
match.

	Returns:	list – The STIX objects related to the given STIX object.

	
add(*args, **kwargs)

	Method for storing STIX objects.

Defines custom behavior before storing STIX objects using the
appropriate method call on the associated DataSink.

	Parameters:	stix_objs (list) – a list of STIX objects

	
add_filter(*args, **kwargs)

	

	
add_filters(*args, **kwargs)

	

	
create(*args, **kwargs)

	Create a STIX object using object factory defaults.

	Parameters:	
	cls – the python-stix2 class of the object to be created (eg. Indicator)

	**kwargs – The property/value pairs of the STIX object to be created

	
parse(*args, **kwargs)

	Convert a string, dict or file-like object into a STIX object.

	Parameters:	
	data (str, dict, file-like object) – The STIX 2 content to be parsed.

	allow_custom (bool) – Whether to allow custom properties as well unknown
custom objects. Note that unknown custom objects cannot be parsed
into STIX objects, and will be returned as is. Default: False.

	version (str) – Which STIX2 version to use. (e.g. “2.0”, “2.1”). If
None, use latest version.

	Returns:	An instantiated Python STIX object.

	WARNING: ‘allow_custom=True’ will allow for the return of any supplied STIX

	dict(s) that cannot be found to map to any known STIX object types (both STIX2
domain objects or defined custom STIX2 objects); NO validation is done. This is
done to allow the processing of possibly unknown custom STIX objects (example
scenario: I need to query a third-party TAXII endpoint that could provide custom
STIX objects that I dont know about ahead of time)

	
set_default_created(*args, **kwargs)

	Set default value for the created property.

	
set_default_creator(*args, **kwargs)

	Set default value for the created_by_ref property.

	
set_default_external_refs(*args, **kwargs)

	Set default external references.

	
set_default_object_marking_refs(*args, **kwargs)

	Set default object markings.

	
class ObjectFactory(created_by_ref=None, created=None, external_references=None, object_marking_refs=None, list_append=True)

	Easily create STIX objects with default values for certain properties.

	Parameters:	
	created_by_ref (optional) – Default created_by_ref value to apply to all
objects created by this factory.

	created (optional) – Default created value to apply to all
objects created by this factory.

	external_references (optional) – Default external_references value to apply
to all objects created by this factory.

	object_marking_refs (optional) – Default object_marking_refs value to apply
to all objects created by this factory.

	list_append (bool, optional) – When a default is set for a list property like
external_references or object_marking_refs and a value for
that property is passed into create(), if this is set to True,
that value will be added to the list alongside the default. If
this is set to False, the passed in value will replace the
default. Defaults to True.

	
create(cls, **kwargs)

	Create a STIX object using object factory defaults.

	Parameters:	
	cls – the python-stix2 class of the object to be created (eg. Indicator)

	**kwargs – The property/value pairs of the STIX object to be created

	
set_default_created(created=None)

	Set default value for the created property.

	
set_default_creator(creator=None)

	Set default value for the created_by_ref property.

	
set_default_external_refs(external_references=None)

	Set default external references.

	
set_default_object_marking_refs(object_marking_refs=None)

	Set default object markings.

exceptions

STIX 2 error classes.

	
exception AtLeastOnePropertyError(cls, properties)

	Violating a constraint of a STIX object type that at least one of the given properties must be populated.

	
exception CustomContentError(msg)

	Custom STIX Content (SDO, Observable, Extension, etc.) detected.

	
exception DependentPropertiesError(cls, dependencies)

	Violating interproperty dependency constraint of a STIX object type.

	
exception DictionaryKeyError(key, reason)

	Dictionary key does not conform to the correct format.

	
exception ExtraPropertiesError(cls, properties)

	One or more extra properties were provided when constructing STIX object.

	
exception ImmutableError(cls, key)

	Attempted to modify an object after creation.

	
exception InvalidObjRefError(cls, prop_name, reason)

	A STIX Cyber Observable Object contains an invalid object reference.

	
exception InvalidSelectorError(cls, key)

	Granular Marking selector violation. The selector must resolve into an existing STIX object property.

	
exception InvalidValueError(cls, prop_name, reason)

	An invalid value was provided to a STIX object’s __init__.

	
exception MarkingNotFoundError(cls, key)

	Marking violation. The marking reference must be present in SDO or SRO.

	
exception MissingPropertiesError(cls, properties)

	Missing one or more required properties when constructing STIX object.

	
exception MutuallyExclusivePropertiesError(cls, properties)

	Violating interproperty mutually exclusive constraint of a STIX object type.

	
exception ParseError(msg)

	Could not parse object.

	
exception RevokeError(called_by)

	Attempted to an operation on a revoked object.

	
exception STIXError

	Base class for errors generated in the stix2 library.

	
exception UnmodifiablePropertyError(unchangable_properties)

	Attempted to modify an unmodifiable property of object when creating a new version.

markings

Functions for working with STIX 2 Data Markings.

These high level functions will operate on both object-level markings and
granular markings unless otherwise noted in each of the functions.

Note

These functions are also available as methods on SDOs, SROs, and Marking
Definitions. The corresponding methods on those classes are identical to
these functions except that the obj parameter is omitted.

	granular_markings
	Functions for working with STIX 2.0 granular markings.

	object_markings
	Functions for working with STIX 2.0 object markings.

	utils
	Utility functions for STIX 2.0 data markings.

	
add_markings(obj, marking, selectors=None)

	Append a marking to this object.

	Parameters:	
	obj – An SDO or SRO object.

	marking – identifier or list of marking identifiers that apply to the
properties selected by selectors.

	selectors – string or list of selectors strings relative to the SDO or
SRO in which the properties appear.

	Raises:	InvalidSelectorError – If selectors fail validation.

	Returns:	A new version of the given SDO or SRO with specified markings added.

Note

If selectors is None, operations will be performed on object level
markings. Otherwise on granular markings.

	
clear_markings(obj, selectors=None)

	Remove all markings associated with the selectors.

	Parameters:	
	obj – An SDO or SRO object.

	selectors – string or list of selectors strings relative to the SDO or
SRO in which the field(s) appear(s).

	Raises:	
	InvalidSelectorError – If selectors fail validation.

	MarkingNotFoundError – If markings to remove are not found on
the provided SDO or SRO.

	Returns:	A new version of the given SDO or SRO with specified markings cleared.

Note

If selectors is None, operations will be performed on object level
markings. Otherwise on granular markings.

	
get_markings(obj, selectors=None, inherited=False, descendants=False)

	Get all markings associated to the field(s) specified by selectors.

	Parameters:	
	obj – An SDO or SRO object.

	selectors – string or list of selectors strings relative to the SDO or
SRO in which the properties appear.

	inherited – If True, include object level markings and granular markings
inherited relative to the properties.

	descendants – If True, include granular markings applied to any children
relative to the properties.

	Returns:	list – Marking identifiers that matched the selectors expression.

Note

If selectors is None, operation will be performed only on object
level markings.

	
is_marked(obj, marking=None, selectors=None, inherited=False, descendants=False)

	Check if field(s) is marked by any marking or by specific marking(s).

	Parameters:	
	obj – An SDO or SRO object.

	marking – identifier or list of marking identifiers that apply to the
properties selected by selectors.

	selectors – string or list of selectors strings relative to the SDO or
SRO in which the field(s) appear(s).

	inherited – If True, include object level markings and granular markings
inherited to determine if the properties is/are marked.

	descendants – If True, include granular markings applied to any children
of the given selector to determine if the properties is/are marked.

	Returns:	bool –

	True if selectors is found on internal SDO or SRO collection.

	False otherwise.

Note

When a list of marking identifiers is provided, if ANY of the provided
marking identifiers match, True is returned.

If selectors is None, operation will be performed only on object
level markings.

	
remove_markings(obj, marking, selectors=None)

	Remove a marking from this object.

	Parameters:	
	obj – An SDO or SRO object.

	marking – identifier or list of marking identifiers that apply to the
properties selected by selectors.

	selectors – string or list of selectors strings relative to the SDO or
SRO in which the properties appear.

	Raises:	
	InvalidSelectorError – If selectors fail validation.

	MarkingNotFoundError – If markings to remove are not found on
the provided SDO or SRO.

	Returns:	A new version of the given SDO or SRO with specified markings removed.

Note

If selectors is None, operations will be performed on object level
markings. Otherwise on granular markings.

	
set_markings(obj, marking, selectors=None)

	Remove all markings associated with selectors and appends a new granular
marking. Refer to clear_markings and add_markings for details.

	Parameters:	
	obj – An SDO or SRO object.

	marking – identifier or list of marking identifiers that apply to the
properties selected by selectors.

	selectors – string or list of selectors strings relative to the SDO or
SRO in which the properties appear.

	Returns:	A new version of the given SDO or SRO with specified markings removed
and new ones added.

Note

If selectors is None, operations will be performed on object level
markings. Otherwise on granular markings.

granular_markings

Functions for working with STIX 2.0 granular markings.

	
add_markings(obj, marking, selectors)

	Append a granular marking to the granular_markings collection.

	Parameters:	
	obj – An SDO or SRO object.

	marking – identifier or list of marking identifiers that apply to the
properties selected by selectors.

	selectors – list of type string, selectors must be relative to the TLO
in which the properties appear.

	Raises:	InvalidSelectorError – If selectors fail validation.

	Returns:	A new version of the given SDO or SRO with specified markings added.

	
clear_markings(obj, selectors)

	Remove all granular markings associated with the selectors.

	Parameters:	
	obj – An SDO or SRO object.

	selectors – string or list of selectors strings relative to the SDO or
SRO in which the properties appear.

	Raises:	
	InvalidSelectorError – If selectors fail validation.

	MarkingNotFoundError – If markings to remove are not found on
the provided SDO or SRO.

	Returns:	A new version of the given SDO or SRO with specified markings cleared.

	
get_markings(obj, selectors, inherited=False, descendants=False)

	Get all granular markings associated to with the properties.

	Parameters:	
	obj – An SDO or SRO object.

	selectors – string or list of selector strings relative to the SDO or
SRO in which the properties appear.

	inherited – If True, include markings inherited relative to the
properties.

	descendants – If True, include granular markings applied to any children
relative to the properties.

	Raises:	InvalidSelectorError – If selectors fail validation.

	Returns:	list – Marking identifiers that matched the selectors expression.

	
is_marked(obj, marking=None, selectors=None, inherited=False, descendants=False)

	Check if field is marked by any marking or by specific marking(s).

	Parameters:	
	obj – An SDO or SRO object.

	marking – identifier or list of marking identifiers that apply to the
properties selected by selectors.

	selectors – string or list of selectors strings relative to the SDO or
SRO in which the properties appear.

	inherited – If True, return markings inherited from the given selector.

	descendants – If True, return granular markings applied to any children
of the given selector.

	Raises:	InvalidSelectorError – If selectors fail validation.

	Returns:	bool –

	True if selectors is found on internal SDO or SRO collection.

	False otherwise.

Note

When a list of marking identifiers is provided, if ANY of the provided
marking identifiers match, True is returned.

	
remove_markings(obj, marking, selectors)

	Remove a granular marking from the granular_markings collection.

	Parameters:	
	obj – An SDO or SRO object.

	marking – identifier or list of marking identifiers that apply to the
properties selected by selectors.

	selectors – string or list of selectors strings relative to the SDO or
SRO in which the properties appear.

	Raises:	
	InvalidSelectorError – If selectors fail validation.

	MarkingNotFoundError – If markings to remove are not found on
the provided SDO or SRO.

	Returns:	A new version of the given SDO or SRO with specified markings removed.

	
set_markings(obj, marking, selectors)

	Remove all granular markings associated with selectors and append a new
granular marking. Refer to clear_markings and add_markings for details.

	Parameters:	
	obj – An SDO or SRO object.

	selectors – string or list of selector strings relative to the SDO or
SRO in which the properties appear.

	marking – identifier or list of marking identifiers that apply to the
properties selected by selectors.

	Returns:	A new version of the given SDO or SRO with specified markings removed
and new ones added.

object_markings

Functions for working with STIX 2.0 object markings.

	
add_markings(obj, marking)

	Append an object level marking to the object_marking_refs collection.

	Parameters:	
	obj – A SDO or SRO object.

	marking – identifier or list of identifiers to apply SDO or SRO object.

	Returns:	A new version of the given SDO or SRO with specified markings added.

	
clear_markings(obj)

	Remove all object level markings from the object_marking_refs collection.

	Parameters:	obj – A SDO or SRO object.

	Returns:	A new version of the given SDO or SRO with object_marking_refs cleared.

	
get_markings(obj)

	Get all object level markings from the given SDO or SRO object.

	Parameters:	obj – A SDO or SRO object.

	Returns:	list –
	Marking identifiers contained in the SDO or SRO. Empty list if no

	markings are present in object_marking_refs.

	
is_marked(obj, marking=None)

	Check if SDO or SRO is marked by any marking or by specific marking(s).

	Parameters:	
	obj – A SDO or SRO object.

	marking – identifier or list of marking identifiers that apply to the
SDO or SRO object.

	Returns:	bool – True if SDO or SRO has object level markings. False otherwise.

Note

When an identifier or list of identifiers is provided, if ANY of the
provided marking refs match, True is returned.

	
remove_markings(obj, marking)

	Remove an object level marking from the object_marking_refs collection.

	Parameters:	
	obj – A SDO or SRO object.

	marking – identifier or list of identifiers that apply to the
SDO or SRO object.

	Raises:	MarkingNotFoundError – If markings to remove are not found on
the provided SDO or SRO.

	Returns:	A new version of the given SDO or SRO with specified markings removed.

	
set_markings(obj, marking)

	Remove all object level markings and append new object level markings to
the collection. Refer to clear_markings and add_markings for details.

	Parameters:	
	obj – A SDO or SRO object.

	marking – identifier or list of identifiers to apply in the
SDO or SRO object.

	Returns:	A new version of the given SDO or SRO with specified markings removed
and new ones added.

utils

Utility functions for STIX 2.0 data markings.

	
build_granular_marking(granular_marking)

	Return a dictionary with the required structure for a granular marking.

	
compress_markings(granular_markings)

	Compress granular markings list.

If there is more than one marking identifier matches. It will collapse into
a single granular marking.

Example

>>> compress_markings([
... {
... "selectors": [
... "description"
...],
... "marking_ref": "marking-definition--613f2e26-407d-48c7-9eca-b8e91df99dc9"
... },
... {
... "selectors": [
... "name"
...],
... "marking_ref": "marking-definition--613f2e26-407d-48c7-9eca-b8e91df99dc9"
... }
...])
[
 {
 "selectors": [
 "description",
 "name"
],
 "marking_ref": "marking-definition--613f2e26-407d-48c7-9eca-b8e91df99dc9"
 }
]

	Parameters:	granular_markings – The granular markings list property present in a
SDO or SRO.

	Returns:	list – A list with all markings collapsed.

	
convert_to_list(data)

	Convert input into a list for further processing.

	
convert_to_marking_list(data)

	Convert input into a list of marking identifiers.

	
expand_markings(granular_markings)

	Expand granular markings list.

If there is more than one selector per granular marking. It will be
expanded using the same marking_ref.

Example

>>> expand_markings([
... {
... "selectors": [
... "description",
... "name"
...],
... "marking_ref": "marking-definition--613f2e26-407d-48c7-9eca-b8e91df99dc9"
... }
...])
[
 {
 "selectors": [
 "description"
],
 "marking_ref": "marking-definition--613f2e26-407d-48c7-9eca-b8e91df99dc9"
 },
 {
 "selectors": [
 "name"
],
 "marking_ref": "marking-definition--613f2e26-407d-48c7-9eca-b8e91df99dc9"
 }
]

	Parameters:	granular_markings – The granular markings list property present in a
SDO or SRO.

	Returns:	list – A list with all markings expanded.

	
iterpath(obj, path=None)

	Generator which walks the input obj model.

Each iteration yields a tuple containing a list of ancestors and the
property value.

	Parameters:	
	obj – An SDO or SRO object.

	path – None, used recursively to store ancestors.

Example

>>> for item in iterpath(obj):
>>> print(item)
(['type'], 'campaign')
...
(['cybox', 'objects', '[0]', 'hashes', 'sha1'], 'cac35ec206d868b7d7cb0b55f31d9425b075082b')

	Returns:	tuple –
	Containing two items: a list of ancestors and the

	property value.

	
validate(obj, selectors)

	Given an SDO or SRO, check that each selector is valid.

patterns

Classes to aid in working with the STIX 2 patterning language.

	
class AndBooleanExpression(operands)

	

	
class AndObservationExpression(operands)

	

	
class BasicObjectPathComponent(property_name, is_key=False)

	

	
class BinaryConstant(value)

	

	
class BooleanConstant(value)

	

	
class EqualityComparisonExpression(lhs, rhs, negated=False)

	

	
class FloatConstant(value)

	

	
class FollowedByObservationExpression(operands)

	

	
class GreaterThanComparisonExpression(lhs, rhs, negated=False)

	

	
class GreaterThanEqualComparisonExpression(lhs, rhs, negated=False)

	

	
class HashConstant(value, type)

	

	
class HexConstant(value)

	

	
class InComparisonExpression(lhs, rhs, negated=False)

	

	
class IntegerConstant(value)

	

	
class IsSubsetComparisonExpression(lhs, rhs, negated=False)

	

	
class IsSupersetComparisonExpression(lhs, rhs, negated=False)

	

	
class LessThanComparisonExpression(lhs, rhs, negated=False)

	

	
class LessThanEqualComparisonExpression(lhs, rhs, negated=False)

	

	
class LikeComparisonExpression(lhs, rhs, negated=False)

	

	
class ListConstant(values)

	

	
class ListObjectPathComponent(property_name, index)

	

	
class MatchesComparisonExpression(lhs, rhs, negated=False)

	

	
class ObjectPath(object_type_name, property_path)

	
	
static make_object_path(lhs)

	

	
merge(other)

	

	
class ObservationExpression(operand)

	

	
class OrBooleanExpression(operands)

	

	
class OrObservationExpression(operands)

	

	
class ParentheticalExpression(exp)

	

	
class QualifiedObservationExpression(observation_expression, qualifier)

	

	
class ReferenceObjectPathComponent(reference_property_name)

	

	
class RepeatQualifier(times_to_repeat)

	

	
class StartStopQualifier(start_time, stop_time)

	

	
class StringConstant(value)

	

	
class TimestampConstant(value)

	

	
class WithinQualifier(number_of_seconds)

	

	
escape_quotes_and_backslashes(s)

	

	
make_constant(value)

	

properties

Classes for representing properties of STIX Objects and Cyber Observables.

	
class BinaryProperty(required=False, fixed=None, default=None, type=None)

	
	
clean(value)

	

	
class BooleanProperty(required=False, fixed=None, default=None, type=None)

	
	
clean(value)

	

	
class DictionaryProperty(required=False, fixed=None, default=None, type=None)

	
	
clean(value)

	

	
class EmbeddedObjectProperty(type, required=False)

	
	
clean(value)

	

	
class EnumProperty(allowed, **kwargs)

	
	
clean(value)

	

	
class FloatProperty(required=False, fixed=None, default=None, type=None)

	
	
clean(value)

	

	
class HashesProperty(required=False, fixed=None, default=None, type=None)

	
	
clean(value)

	

	
class HexProperty(required=False, fixed=None, default=None, type=None)

	
	
clean(value)

	

	
class IDProperty(type)

	
	
clean(value)

	

	
default()

	

	
class IntegerProperty(required=False, fixed=None, default=None, type=None)

	
	
clean(value)

	

	
class ListProperty(contained, **kwargs)

	
	
clean(value)

	

	
class ObjectReferenceProperty(valid_types=None, **kwargs)

	

	
class PatternProperty(**kwargs)

	
	
clean(value)

	

	
class Property(required=False, fixed=None, default=None, type=None)

	Represent a property of STIX data type.

Subclasses can define the following attributes as keyword arguments to
__init__().

	Parameters:	
	required (bool) – If True, the property must be provided when creating an
object with that property. No default value exists for these properties.
(Default: False)

	fixed – This provides a constant default value. Users are free to
provide this value explicity when constructing an object (which allows
you to copy all values from an existing object to a new object), but
if the user provides a value other than the fixed value, it will raise
an error. This is semantically equivalent to defining both:

	a clean() function that checks if the value matches the fixed
value, and

	a default() function that returns the fixed value.

Subclasses can also define the following functions:

	
	def clean(self, value) -> any:

	
	Return a value that is valid for this property. If value is not
valid for this property, this will attempt to transform it first. If
value is not valid and no such transformation is possible, it should
raise a ValueError.

	
	def default(self):

	
	provide a default value for this property.

	
	default() can return the special value NOW to use the current

	time. This is useful when several timestamps in the same object need
to use the same default value, so calling now() for each property–
likely several microseconds apart– does not work.

Subclasses can instead provide a lambda function for default as a keyword
argument. clean should not be provided as a lambda since lambdas cannot
raise their own exceptions.

When instantiating Properties, required and default should not be used
together. default implies that the property is required in the specification
so this function will be used to supply a value if none is provided.
required means that the user must provide this; it is required in the
specification and we can’t or don’t want to create a default value.

	
clean(value)

	

	
class ReferenceProperty(required=False, type=None)

	
	
clean(value)

	

	
class SelectorProperty(type=None)

	
	
clean(value)

	

	
class StringProperty(**kwargs)

	
	
clean(value)

	

	
class TimestampProperty(precision=None, **kwargs)

	
	
clean(value)

	

	
class TypeProperty(type)

	

utils

Utility functions and classes for the stix2 library.

	
class STIXdatetime

	

	
deduplicate(stix_obj_list)

	Deduplicate a list of STIX objects to a unique set.

Reduces a set of STIX objects to unique set by looking
at ‘id’ and ‘modified’ fields - as a unique object version
is determined by the combination of those fields

Note: Be aware, as can be seen in the implementation
of deduplicate(),that if the “stix_obj_list” argument has
multiple STIX objects of the same version, the last object
version found in the list will be the one that is returned.

	Parameters:	stix_obj_list (list) – list of STIX objects (dicts)

	Returns:	A list with a unique set of the passed list of STIX objects.

	
find_property_index(obj, properties, tuple_to_find)

	Recursively find the property in the object model, return the index
according to the _properties OrderedDict. If it’s a list look for
individual objects. Returns and integer indicating its location

	
format_datetime(dttm)

	Convert a datetime object into a valid STIX timestamp string.

	Convert to timezone-aware

	Convert to UTC

	Format in ISO format

	Ensure correct precision
a. Add subsecond value if non-zero and precision not defined

	Add “Z”

	
get_class_hierarchy_names(obj)

	Given an object, return the names of the class hierarchy.

	
get_timestamp()

	Return a STIX timestamp of the current date and time.

	
get_type_from_id(stix_id)

	

	
new_version(data, **kwargs)

	Create a new version of a STIX object, by modifying properties and
updating the modified property.

	
parse_into_datetime(value, precision=None)

	Parse a value into a valid STIX timestamp object.

	
remove_custom_stix(stix_obj)

	Remove any custom STIX objects or properties.

Warning: This function is a best effort utility, in that
it will remove custom objects and properties based on the
type names; i.e. if “x-” prefixes object types, and “x_”
prefixes property types. According to the STIX2 spec,
those naming conventions are a SHOULDs not MUSTs, meaning
that valid custom STIX content may ignore those conventions
and in effect render this utility function invalid when used
on that STIX content.

	Parameters:	stix_obj (dict OR python-stix obj) – a single python-stix object
or dict of a STIX object

	Returns:	A new version of the object with any custom content removed

	
revoke(data)

	Revoke a STIX object.

	Returns:	A new version of the object with revoked set to True.

workbench

Functions and class wrappers for interacting with STIX data at a high level.

	
create(self, *args, **kwargs)

	Create a STIX object using object factory defaults.

	Parameters:	
	cls – the python-stix2 class of the object to be created (eg. Indicator)

	**kwargs – The property/value pairs of the STIX object to be created

	
set_default_creator(self, *args, **kwargs)

	Set default value for the created_by_ref property.

	
set_default_created(self, *args, **kwargs)

	Set default value for the created property.

	
set_default_external_refs(self, *args, **kwargs)

	Set default external references.

	
set_default_object_marking_refs(self, *args, **kwargs)

	Set default object markings.

	
get(self, *args, **kwargs)

	Retrieve the most recent version of a single STIX object by ID.

Translate get() call to the appropriate DataSource call.

	Parameters:	stix_id (str) – the id of the STIX object to retrieve.

	Returns:	stix_obj –
	the single most recent version of the STIX

	object specified by the “id”.

	
all_versions(self, *args, **kwargs)

	Retrieve all versions of a single STIX object by ID.

Translate all_versions() call to the appropriate DataSource call.

	Parameters:	stix_id (str) – the id of the STIX object to retrieve.

	Returns:	list – All versions of the specified STIX object.

	
query(self, *args, **kwargs)

	Retrieve STIX objects matching a set of filters.

Translate query() call to the appropriate DataSource call.

	Parameters:	query (list) – a list of filters (which collectively are the query)
to conduct search on.

	Returns:	list – The STIX objects matching the query.

	
creator_of(self, *args, **kwargs)

	Retrieve the Identity refered to by the object’s created_by_ref.

Translate creator_of() call to the appropriate DataSource call.

	Parameters:	obj – The STIX object whose created_by_ref property will be looked
up.

	Returns:	The STIX object’s creator, or None, if the object contains no
created_by_ref property or the object’s creator cannot be found.

	
relationships(self, *args, **kwargs)

	Retrieve Relationships involving the given STIX object.

Translate relationships() call to the appropriate DataSource call.

Only one of source_only and target_only may be True.

	Parameters:	
	obj (STIX object OR dict OR str) – The STIX object (or its ID) whose
relationships will be looked up.

	relationship_type (str) – Only retrieve Relationships of this type.
If None, all relationships will be returned, regardless of type.

	source_only (bool) – Only retrieve Relationships for which this
object is the source_ref. Default: False.

	target_only (bool) – Only retrieve Relationships for which this
object is the target_ref. Default: False.

	Returns:	list – The Relationship objects involving the given STIX object.

	
related_to(self, *args, **kwargs)

	Retrieve STIX Objects that have a Relationship involving the given
STIX object.

Translate related_to() call to the appropriate DataSource call.

Only one of source_only and target_only may be True.

	Parameters:	
	obj (STIX object OR dict OR str) – The STIX object (or its ID) whose
related objects will be looked up.

	relationship_type (str) – Only retrieve objects related by this
Relationships type. If None, all related objects will be
returned, regardless of type.

	source_only (bool) – Only examine Relationships for which this
object is the source_ref. Default: False.

	target_only (bool) – Only examine Relationships for which this
object is the target_ref. Default: False.

	filters (list) – list of additional filters the related objects must
match.

	Returns:	list – The STIX objects related to the given STIX object.

	
save(self, *args, **kwargs)

	Method for storing STIX objects.

Defines custom behavior before storing STIX objects using the
appropriate method call on the associated DataSink.

	Parameters:	stix_objs (list) – a list of STIX objects

	
add_filters(self, *args, **kwargs)

	

	
add_filter(self, *args, **kwargs)

	

	
parse(self, *args, **kwargs)

	Convert a string, dict or file-like object into a STIX object.

	Parameters:	
	data (str, dict, file-like object) – The STIX 2 content to be parsed.

	allow_custom (bool) – Whether to allow custom properties as well unknown
custom objects. Note that unknown custom objects cannot be parsed
into STIX objects, and will be returned as is. Default: False.

	version (str) – Which STIX2 version to use. (e.g. “2.0”, “2.1”). If
None, use latest version.

	Returns:	An instantiated Python STIX object.

	WARNING: ‘allow_custom=True’ will allow for the return of any supplied STIX

	dict(s) that cannot be found to map to any known STIX object types (both STIX2
domain objects or defined custom STIX2 objects); NO validation is done. This is
done to allow the processing of possibly unknown custom STIX objects (example
scenario: I need to query a third-party TAXII endpoint that could provide custom
STIX objects that I dont know about ahead of time)

	
add_data_source(self, data_source)

	Attach a DataSource to CompositeDataSource instance

	Parameters:	data_source (DataSource) – a stix2.DataSource to attach
to the CompositeDataSource

	
add_data_sources(self, data_sources)

	Attach list of DataSources to CompositeDataSource instance

	Parameters:	data_sources (list) – stix2.DataSources to attach to
CompositeDataSource

	
class AttackPattern

	Workbench wrapper around the AttackPattern object.

	
created_by(*args, **kwargs)

	Retrieve the Identity refered to by the object’s created_by_ref.

Translate creator_of() call to the appropriate DataSource call.

	Args:

	
	obj: The STIX object whose created_by_ref property will be looked

	up.

	Returns:

	The STIX object’s creator, or None, if the object contains no
created_by_ref property or the object’s creator cannot be found.

	
relationships(*args, **kwargs)

	Retrieve Relationships involving the given STIX object.

Translate relationships() call to the appropriate DataSource call.

Only one of source_only and target_only may be True.

	Args:

	
	obj (STIX object OR dict OR str): The STIX object (or its ID) whose

	relationships will be looked up.

	relationship_type (str): Only retrieve Relationships of this type.

	If None, all relationships will be returned, regardless of type.

	source_only (bool): Only retrieve Relationships for which this

	object is the source_ref. Default: False.

	target_only (bool): Only retrieve Relationships for which this

	object is the target_ref. Default: False.

	Returns:

	list: The Relationship objects involving the given STIX object.

	
related(*args, **kwargs)

	Retrieve STIX Objects that have a Relationship involving the given
STIX object.

Translate related_to() call to the appropriate DataSource call.

Only one of source_only and target_only may be True.

	Args:

	
	obj (STIX object OR dict OR str): The STIX object (or its ID) whose

	related objects will be looked up.

	relationship_type (str): Only retrieve objects related by this

	Relationships type. If None, all related objects will be
returned, regardless of type.

	source_only (bool): Only examine Relationships for which this

	object is the source_ref. Default: False.

	target_only (bool): Only examine Relationships for which this

	object is the target_ref. Default: False.

	filters (list): list of additional filters the related objects must

	match.

	Returns:

	list: The STIX objects related to the given STIX object.

	
class Campaign

	Workbench wrapper around the Campaign object.

	
created_by(*args, **kwargs)

	Retrieve the Identity refered to by the object’s created_by_ref.

Translate creator_of() call to the appropriate DataSource call.

	Args:

	
	obj: The STIX object whose created_by_ref property will be looked

	up.

	Returns:

	The STIX object’s creator, or None, if the object contains no
created_by_ref property or the object’s creator cannot be found.

	
relationships(*args, **kwargs)

	Retrieve Relationships involving the given STIX object.

Translate relationships() call to the appropriate DataSource call.

Only one of source_only and target_only may be True.

	Args:

	
	obj (STIX object OR dict OR str): The STIX object (or its ID) whose

	relationships will be looked up.

	relationship_type (str): Only retrieve Relationships of this type.

	If None, all relationships will be returned, regardless of type.

	source_only (bool): Only retrieve Relationships for which this

	object is the source_ref. Default: False.

	target_only (bool): Only retrieve Relationships for which this

	object is the target_ref. Default: False.

	Returns:

	list: The Relationship objects involving the given STIX object.

	
related(*args, **kwargs)

	Retrieve STIX Objects that have a Relationship involving the given
STIX object.

Translate related_to() call to the appropriate DataSource call.

Only one of source_only and target_only may be True.

	Args:

	
	obj (STIX object OR dict OR str): The STIX object (or its ID) whose

	related objects will be looked up.

	relationship_type (str): Only retrieve objects related by this

	Relationships type. If None, all related objects will be
returned, regardless of type.

	source_only (bool): Only examine Relationships for which this

	object is the source_ref. Default: False.

	target_only (bool): Only examine Relationships for which this

	object is the target_ref. Default: False.

	filters (list): list of additional filters the related objects must

	match.

	Returns:

	list: The STIX objects related to the given STIX object.

	
class CourseOfAction

	Workbench wrapper around the CourseOfAction object.

	
created_by(*args, **kwargs)

	Retrieve the Identity refered to by the object’s created_by_ref.

Translate creator_of() call to the appropriate DataSource call.

	Args:

	
	obj: The STIX object whose created_by_ref property will be looked

	up.

	Returns:

	The STIX object’s creator, or None, if the object contains no
created_by_ref property or the object’s creator cannot be found.

	
relationships(*args, **kwargs)

	Retrieve Relationships involving the given STIX object.

Translate relationships() call to the appropriate DataSource call.

Only one of source_only and target_only may be True.

	Args:

	
	obj (STIX object OR dict OR str): The STIX object (or its ID) whose

	relationships will be looked up.

	relationship_type (str): Only retrieve Relationships of this type.

	If None, all relationships will be returned, regardless of type.

	source_only (bool): Only retrieve Relationships for which this

	object is the source_ref. Default: False.

	target_only (bool): Only retrieve Relationships for which this

	object is the target_ref. Default: False.

	Returns:

	list: The Relationship objects involving the given STIX object.

	
related(*args, **kwargs)

	Retrieve STIX Objects that have a Relationship involving the given
STIX object.

Translate related_to() call to the appropriate DataSource call.

Only one of source_only and target_only may be True.

	Args:

	
	obj (STIX object OR dict OR str): The STIX object (or its ID) whose

	related objects will be looked up.

	relationship_type (str): Only retrieve objects related by this

	Relationships type. If None, all related objects will be
returned, regardless of type.

	source_only (bool): Only examine Relationships for which this

	object is the source_ref. Default: False.

	target_only (bool): Only examine Relationships for which this

	object is the target_ref. Default: False.

	filters (list): list of additional filters the related objects must

	match.

	Returns:

	list: The STIX objects related to the given STIX object.

	
class Identity

	Workbench wrapper around the Identity object.

	
created_by(*args, **kwargs)

	Retrieve the Identity refered to by the object’s created_by_ref.

Translate creator_of() call to the appropriate DataSource call.

	Args:

	
	obj: The STIX object whose created_by_ref property will be looked

	up.

	Returns:

	The STIX object’s creator, or None, if the object contains no
created_by_ref property or the object’s creator cannot be found.

	
relationships(*args, **kwargs)

	Retrieve Relationships involving the given STIX object.

Translate relationships() call to the appropriate DataSource call.

Only one of source_only and target_only may be True.

	Args:

	
	obj (STIX object OR dict OR str): The STIX object (or its ID) whose

	relationships will be looked up.

	relationship_type (str): Only retrieve Relationships of this type.

	If None, all relationships will be returned, regardless of type.

	source_only (bool): Only retrieve Relationships for which this

	object is the source_ref. Default: False.

	target_only (bool): Only retrieve Relationships for which this

	object is the target_ref. Default: False.

	Returns:

	list: The Relationship objects involving the given STIX object.

	
related(*args, **kwargs)

	Retrieve STIX Objects that have a Relationship involving the given
STIX object.

Translate related_to() call to the appropriate DataSource call.

Only one of source_only and target_only may be True.

	Args:

	
	obj (STIX object OR dict OR str): The STIX object (or its ID) whose

	related objects will be looked up.

	relationship_type (str): Only retrieve objects related by this

	Relationships type. If None, all related objects will be
returned, regardless of type.

	source_only (bool): Only examine Relationships for which this

	object is the source_ref. Default: False.

	target_only (bool): Only examine Relationships for which this

	object is the target_ref. Default: False.

	filters (list): list of additional filters the related objects must

	match.

	Returns:

	list: The STIX objects related to the given STIX object.

	
class Indicator

	Workbench wrapper around the Indicator object.

	
created_by(*args, **kwargs)

	Retrieve the Identity refered to by the object’s created_by_ref.

Translate creator_of() call to the appropriate DataSource call.

	Args:

	
	obj: The STIX object whose created_by_ref property will be looked

	up.

	Returns:

	The STIX object’s creator, or None, if the object contains no
created_by_ref property or the object’s creator cannot be found.

	
relationships(*args, **kwargs)

	Retrieve Relationships involving the given STIX object.

Translate relationships() call to the appropriate DataSource call.

Only one of source_only and target_only may be True.

	Args:

	
	obj (STIX object OR dict OR str): The STIX object (or its ID) whose

	relationships will be looked up.

	relationship_type (str): Only retrieve Relationships of this type.

	If None, all relationships will be returned, regardless of type.

	source_only (bool): Only retrieve Relationships for which this

	object is the source_ref. Default: False.

	target_only (bool): Only retrieve Relationships for which this

	object is the target_ref. Default: False.

	Returns:

	list: The Relationship objects involving the given STIX object.

	
related(*args, **kwargs)

	Retrieve STIX Objects that have a Relationship involving the given
STIX object.

Translate related_to() call to the appropriate DataSource call.

Only one of source_only and target_only may be True.

	Args:

	
	obj (STIX object OR dict OR str): The STIX object (or its ID) whose

	related objects will be looked up.

	relationship_type (str): Only retrieve objects related by this

	Relationships type. If None, all related objects will be
returned, regardless of type.

	source_only (bool): Only examine Relationships for which this

	object is the source_ref. Default: False.

	target_only (bool): Only examine Relationships for which this

	object is the target_ref. Default: False.

	filters (list): list of additional filters the related objects must

	match.

	Returns:

	list: The STIX objects related to the given STIX object.

	
class IntrusionSet

	Workbench wrapper around the IntrusionSet object.

	
created_by(*args, **kwargs)

	Retrieve the Identity refered to by the object’s created_by_ref.

Translate creator_of() call to the appropriate DataSource call.

	Args:

	
	obj: The STIX object whose created_by_ref property will be looked

	up.

	Returns:

	The STIX object’s creator, or None, if the object contains no
created_by_ref property or the object’s creator cannot be found.

	
relationships(*args, **kwargs)

	Retrieve Relationships involving the given STIX object.

Translate relationships() call to the appropriate DataSource call.

Only one of source_only and target_only may be True.

	Args:

	
	obj (STIX object OR dict OR str): The STIX object (or its ID) whose

	relationships will be looked up.

	relationship_type (str): Only retrieve Relationships of this type.

	If None, all relationships will be returned, regardless of type.

	source_only (bool): Only retrieve Relationships for which this

	object is the source_ref. Default: False.

	target_only (bool): Only retrieve Relationships for which this

	object is the target_ref. Default: False.

	Returns:

	list: The Relationship objects involving the given STIX object.

	
related(*args, **kwargs)

	Retrieve STIX Objects that have a Relationship involving the given
STIX object.

Translate related_to() call to the appropriate DataSource call.

Only one of source_only and target_only may be True.

	Args:

	
	obj (STIX object OR dict OR str): The STIX object (or its ID) whose

	related objects will be looked up.

	relationship_type (str): Only retrieve objects related by this

	Relationships type. If None, all related objects will be
returned, regardless of type.

	source_only (bool): Only examine Relationships for which this

	object is the source_ref. Default: False.

	target_only (bool): Only examine Relationships for which this

	object is the target_ref. Default: False.

	filters (list): list of additional filters the related objects must

	match.

	Returns:

	list: The STIX objects related to the given STIX object.

	
class Malware

	Workbench wrapper around the Malware object.

	
created_by(*args, **kwargs)

	Retrieve the Identity refered to by the object’s created_by_ref.

Translate creator_of() call to the appropriate DataSource call.

	Args:

	
	obj: The STIX object whose created_by_ref property will be looked

	up.

	Returns:

	The STIX object’s creator, or None, if the object contains no
created_by_ref property or the object’s creator cannot be found.

	
relationships(*args, **kwargs)

	Retrieve Relationships involving the given STIX object.

Translate relationships() call to the appropriate DataSource call.

Only one of source_only and target_only may be True.

	Args:

	
	obj (STIX object OR dict OR str): The STIX object (or its ID) whose

	relationships will be looked up.

	relationship_type (str): Only retrieve Relationships of this type.

	If None, all relationships will be returned, regardless of type.

	source_only (bool): Only retrieve Relationships for which this

	object is the source_ref. Default: False.

	target_only (bool): Only retrieve Relationships for which this

	object is the target_ref. Default: False.

	Returns:

	list: The Relationship objects involving the given STIX object.

	
related(*args, **kwargs)

	Retrieve STIX Objects that have a Relationship involving the given
STIX object.

Translate related_to() call to the appropriate DataSource call.

Only one of source_only and target_only may be True.

	Args:

	
	obj (STIX object OR dict OR str): The STIX object (or its ID) whose

	related objects will be looked up.

	relationship_type (str): Only retrieve objects related by this

	Relationships type. If None, all related objects will be
returned, regardless of type.

	source_only (bool): Only examine Relationships for which this

	object is the source_ref. Default: False.

	target_only (bool): Only examine Relationships for which this

	object is the target_ref. Default: False.

	filters (list): list of additional filters the related objects must

	match.

	Returns:

	list: The STIX objects related to the given STIX object.

	
class ObservedData

	Workbench wrapper around the ObservedData object.

	
created_by(*args, **kwargs)

	Retrieve the Identity refered to by the object’s created_by_ref.

Translate creator_of() call to the appropriate DataSource call.

	Args:

	
	obj: The STIX object whose created_by_ref property will be looked

	up.

	Returns:

	The STIX object’s creator, or None, if the object contains no
created_by_ref property or the object’s creator cannot be found.

	
relationships(*args, **kwargs)

	Retrieve Relationships involving the given STIX object.

Translate relationships() call to the appropriate DataSource call.

Only one of source_only and target_only may be True.

	Args:

	
	obj (STIX object OR dict OR str): The STIX object (or its ID) whose

	relationships will be looked up.

	relationship_type (str): Only retrieve Relationships of this type.

	If None, all relationships will be returned, regardless of type.

	source_only (bool): Only retrieve Relationships for which this

	object is the source_ref. Default: False.

	target_only (bool): Only retrieve Relationships for which this

	object is the target_ref. Default: False.

	Returns:

	list: The Relationship objects involving the given STIX object.

	
related(*args, **kwargs)

	Retrieve STIX Objects that have a Relationship involving the given
STIX object.

Translate related_to() call to the appropriate DataSource call.

Only one of source_only and target_only may be True.

	Args:

	
	obj (STIX object OR dict OR str): The STIX object (or its ID) whose

	related objects will be looked up.

	relationship_type (str): Only retrieve objects related by this

	Relationships type. If None, all related objects will be
returned, regardless of type.

	source_only (bool): Only examine Relationships for which this

	object is the source_ref. Default: False.

	target_only (bool): Only examine Relationships for which this

	object is the target_ref. Default: False.

	filters (list): list of additional filters the related objects must

	match.

	Returns:

	list: The STIX objects related to the given STIX object.

	
class Report

	Workbench wrapper around the Report object.

	
created_by(*args, **kwargs)

	Retrieve the Identity refered to by the object’s created_by_ref.

Translate creator_of() call to the appropriate DataSource call.

	Args:

	
	obj: The STIX object whose created_by_ref property will be looked

	up.

	Returns:

	The STIX object’s creator, or None, if the object contains no
created_by_ref property or the object’s creator cannot be found.

	
relationships(*args, **kwargs)

	Retrieve Relationships involving the given STIX object.

Translate relationships() call to the appropriate DataSource call.

Only one of source_only and target_only may be True.

	Args:

	
	obj (STIX object OR dict OR str): The STIX object (or its ID) whose

	relationships will be looked up.

	relationship_type (str): Only retrieve Relationships of this type.

	If None, all relationships will be returned, regardless of type.

	source_only (bool): Only retrieve Relationships for which this

	object is the source_ref. Default: False.

	target_only (bool): Only retrieve Relationships for which this

	object is the target_ref. Default: False.

	Returns:

	list: The Relationship objects involving the given STIX object.

	
related(*args, **kwargs)

	Retrieve STIX Objects that have a Relationship involving the given
STIX object.

Translate related_to() call to the appropriate DataSource call.

Only one of source_only and target_only may be True.

	Args:

	
	obj (STIX object OR dict OR str): The STIX object (or its ID) whose

	related objects will be looked up.

	relationship_type (str): Only retrieve objects related by this

	Relationships type. If None, all related objects will be
returned, regardless of type.

	source_only (bool): Only examine Relationships for which this

	object is the source_ref. Default: False.

	target_only (bool): Only examine Relationships for which this

	object is the target_ref. Default: False.

	filters (list): list of additional filters the related objects must

	match.

	Returns:

	list: The STIX objects related to the given STIX object.

	
class ThreatActor

	Workbench wrapper around the ThreatActor object.

	
created_by(*args, **kwargs)

	Retrieve the Identity refered to by the object’s created_by_ref.

Translate creator_of() call to the appropriate DataSource call.

	Args:

	
	obj: The STIX object whose created_by_ref property will be looked

	up.

	Returns:

	The STIX object’s creator, or None, if the object contains no
created_by_ref property or the object’s creator cannot be found.

	
relationships(*args, **kwargs)

	Retrieve Relationships involving the given STIX object.

Translate relationships() call to the appropriate DataSource call.

Only one of source_only and target_only may be True.

	Args:

	
	obj (STIX object OR dict OR str): The STIX object (or its ID) whose

	relationships will be looked up.

	relationship_type (str): Only retrieve Relationships of this type.

	If None, all relationships will be returned, regardless of type.

	source_only (bool): Only retrieve Relationships for which this

	object is the source_ref. Default: False.

	target_only (bool): Only retrieve Relationships for which this

	object is the target_ref. Default: False.

	Returns:

	list: The Relationship objects involving the given STIX object.

	
related(*args, **kwargs)

	Retrieve STIX Objects that have a Relationship involving the given
STIX object.

Translate related_to() call to the appropriate DataSource call.

Only one of source_only and target_only may be True.

	Args:

	
	obj (STIX object OR dict OR str): The STIX object (or its ID) whose

	related objects will be looked up.

	relationship_type (str): Only retrieve objects related by this

	Relationships type. If None, all related objects will be
returned, regardless of type.

	source_only (bool): Only examine Relationships for which this

	object is the source_ref. Default: False.

	target_only (bool): Only examine Relationships for which this

	object is the target_ref. Default: False.

	filters (list): list of additional filters the related objects must

	match.

	Returns:

	list: The STIX objects related to the given STIX object.

	
class Tool

	Workbench wrapper around the Tool object.

	
created_by(*args, **kwargs)

	Retrieve the Identity refered to by the object’s created_by_ref.

Translate creator_of() call to the appropriate DataSource call.

	Args:

	
	obj: The STIX object whose created_by_ref property will be looked

	up.

	Returns:

	The STIX object’s creator, or None, if the object contains no
created_by_ref property or the object’s creator cannot be found.

	
relationships(*args, **kwargs)

	Retrieve Relationships involving the given STIX object.

Translate relationships() call to the appropriate DataSource call.

Only one of source_only and target_only may be True.

	Args:

	
	obj (STIX object OR dict OR str): The STIX object (or its ID) whose

	relationships will be looked up.

	relationship_type (str): Only retrieve Relationships of this type.

	If None, all relationships will be returned, regardless of type.

	source_only (bool): Only retrieve Relationships for which this

	object is the source_ref. Default: False.

	target_only (bool): Only retrieve Relationships for which this

	object is the target_ref. Default: False.

	Returns:

	list: The Relationship objects involving the given STIX object.

	
related(*args, **kwargs)

	Retrieve STIX Objects that have a Relationship involving the given
STIX object.

Translate related_to() call to the appropriate DataSource call.

Only one of source_only and target_only may be True.

	Args:

	
	obj (STIX object OR dict OR str): The STIX object (or its ID) whose

	related objects will be looked up.

	relationship_type (str): Only retrieve objects related by this

	Relationships type. If None, all related objects will be
returned, regardless of type.

	source_only (bool): Only examine Relationships for which this

	object is the source_ref. Default: False.

	target_only (bool): Only examine Relationships for which this

	object is the target_ref. Default: False.

	filters (list): list of additional filters the related objects must

	match.

	Returns:

	list: The STIX objects related to the given STIX object.

	
class Vulnerability

	Workbench wrapper around the Vulnerability object.

	
created_by(*args, **kwargs)

	Retrieve the Identity refered to by the object’s created_by_ref.

Translate creator_of() call to the appropriate DataSource call.

	Args:

	
	obj: The STIX object whose created_by_ref property will be looked

	up.

	Returns:

	The STIX object’s creator, or None, if the object contains no
created_by_ref property or the object’s creator cannot be found.

	
relationships(*args, **kwargs)

	Retrieve Relationships involving the given STIX object.

Translate relationships() call to the appropriate DataSource call.

Only one of source_only and target_only may be True.

	Args:

	
	obj (STIX object OR dict OR str): The STIX object (or its ID) whose

	relationships will be looked up.

	relationship_type (str): Only retrieve Relationships of this type.

	If None, all relationships will be returned, regardless of type.

	source_only (bool): Only retrieve Relationships for which this

	object is the source_ref. Default: False.

	target_only (bool): Only retrieve Relationships for which this

	object is the target_ref. Default: False.

	Returns:

	list: The Relationship objects involving the given STIX object.

	
related(*args, **kwargs)

	Retrieve STIX Objects that have a Relationship involving the given
STIX object.

Translate related_to() call to the appropriate DataSource call.

Only one of source_only and target_only may be True.

	Args:

	
	obj (STIX object OR dict OR str): The STIX object (or its ID) whose

	related objects will be looked up.

	relationship_type (str): Only retrieve objects related by this

	Relationships type. If None, all related objects will be
returned, regardless of type.

	source_only (bool): Only examine Relationships for which this

	object is the source_ref. Default: False.

	target_only (bool): Only examine Relationships for which this

	object is the target_ref. Default: False.

	filters (list): list of additional filters the related objects must

	match.

	Returns:

	list: The STIX objects related to the given STIX object.

	
attack_patterns(filters=None)

	Retrieve all Attack Pattern objects.

	Parameters:	filters (list, optional) – A list of additional filters to apply to
the query.

	
campaigns(filters=None)

	Retrieve all Campaign objects.

	Parameters:	filters (list, optional) – A list of additional filters to apply to
the query.

	
courses_of_action(filters=None)

	Retrieve all Course of Action objects.

	Parameters:	filters (list, optional) – A list of additional filters to apply to
the query.

	
identities(filters=None)

	Retrieve all Identity objects.

	Parameters:	filters (list, optional) – A list of additional filters to apply to
the query.

	
indicators(filters=None)

	Retrieve all Indicator objects.

	Parameters:	filters (list, optional) – A list of additional filters to apply to
the query.

	
intrusion_sets(filters=None)

	Retrieve all Intrusion Set objects.

	Parameters:	filters (list, optional) – A list of additional filters to apply to
the query.

	
malware(filters=None)

	Retrieve all Malware objects.

	Parameters:	filters (list, optional) – A list of additional filters to apply to
the query.

	
observed_data(filters=None)

	Retrieve all Observed Data objects.

	Parameters:	filters (list, optional) – A list of additional filters to apply to
the query.

	
reports(filters=None)

	Retrieve all Report objects.

	Parameters:	filters (list, optional) – A list of additional filters to apply to
the query.

	
threat_actors(filters=None)

	Retrieve all Threat Actor objects.

	Parameters:	filters (list, optional) – A list of additional filters to apply to
the query.

	
tools(filters=None)

	Retrieve all Tool objects.

	Parameters:	filters (list, optional) – A list of additional filters to apply to
the query.

	
vulnerabilities(filters=None)

	Retrieve all Vulnerability objects.

	Parameters:	filters (list, optional) – A list of additional filters to apply to
the query.

common

STIX 2 Common Data Types and Properties.

	
class ExternalReference(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part1-stix-core/stix-v2.0-cs01-part1-stix-core.html#_Toc496709261].

	Properties:	
	source_name (String, required)

	description (String)

	url (String)

	hashes (Hashes)

	external_id (String)

	
class GranularMarking(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part1-stix-core/stix-v2.0-cs01-part1-stix-core.html#_Toc496709290].

	Properties:	
	marking_ref (Reference, required)

	selectors (List of Selectors, required)

	
class KillChainPhase(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part1-stix-core/stix-v2.0-cs01-part1-stix-core.html#_Toc496709267].

	Properties:	
	kill_chain_name (String, required)

	phase_name (String, required)

	
class MarkingDefinition(**kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part1-stix-core/stix-v2.0-cs01-part1-stix-core.html#_Toc496709284].

	Properties:	
	id (ID)

	created_by_ref (Reference)

	created (Timestamp, default: current date/time)

	external_references (List of External References)

	object_marking_refs (List of References)

	granular_markings (List of Granular Markings)

	definition_type (String, required)

	definition (Marking, required)

	
class MarkingProperty(required=False, fixed=None, default=None, type=None)

	Represent the marking objects in the definition property of
marking-definition objects.

	
clean(value)

	

	
class StatementMarking(statement=None, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part1-stix-core/stix-v2.0-cs01-part1-stix-core.html#_Toc496709286].

	Properties:	
	statement (String, required)

	
class TLPMarking(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part1-stix-core/stix-v2.0-cs01-part1-stix-core.html#_Toc496709287].

	Properties:	
	tlp (String, required)

	
CustomMarking(type='x-custom-marking', properties=None)

	Custom STIX Marking decorator.

Example

>>> @CustomMarking('x-custom-marking', [
... ('property1', StringProperty(required=True)),
... ('property2', IntegerProperty()),
...])
... class MyNewMarkingObjectType():
... pass

observables

STIX 2.0 Cyber Observable Objects.

Embedded observable object types, such as Email MIME Component, which is
embedded in Email Message objects, inherit from _STIXBase instead of
Observable and do not have a _type attribute.

	
class AlternateDataStream(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716239].

	Properties:	
	name (String, required)

	hashes (Hashes)

	size (Integer)

	
class ArchiveExt(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716235].

	Properties:	
	contains_refs (List of Object References, required)

	version (String)

	comment (String)

	
class Artifact(**kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716219].

	Properties:	
	mime_type (String)

	payload_bin (Binary)

	url (String)

	hashes (Hashes)

	extensions (Extensions)

	
class AutonomousSystem(**kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716221].

	Properties:	
	number (Integer, required)

	name (String)

	rir (String)

	extensions (Extensions)

	
class Directory(**kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716223].

	Properties:	
	path (String, required)

	path_enc (String)

	created (Timestamp)

	modified (Timestamp)

	accessed (Timestamp)

	contains_refs (List of Object References)

	extensions (Extensions)

	
class DomainName(**kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716225].

	Properties:	
	value (String, required)

	resolves_to_refs (List of Object References)

	extensions (Extensions)

	
class EmailAddress(**kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716227].

	Properties:	
	value (String, required)

	display_name (String)

	belongs_to_ref (Object Reference)

	extensions (Extensions)

	
class EmailMIMEComponent(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716231].

	Properties:	
	body (String)

	body_raw_ref (Object Reference)

	content_type (String)

	content_disposition (String)

	
class EmailMessage(**kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716229].

	Properties:	
	is_multipart (Boolean, required)

	date (Timestamp)

	content_type (String)

	from_ref (Object Reference)

	sender_ref (Object Reference)

	to_refs (List of Object References)

	cc_refs (List of Object References)

	bcc_refs (List of Object References)

	subject (String)

	received_lines (List of Strings)

	additional_header_fields (Dictionary)

	body (String)

	body_multipart (List of Embedded Objects)

	raw_email_ref (Object Reference)

	extensions (Extensions)

	
class ExtensionsProperty(enclosing_type=None, required=False)

	Property for representing extensions on Observable objects.

	
clean(value)

	

	
class File(**kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716233].

	Properties:	
	hashes (Hashes)

	size (Integer)

	name (String)

	name_enc (String)

	magic_number_hex (Hex)

	mime_type (String)

	created (Timestamp)

	modified (Timestamp)

	accessed (Timestamp)

	parent_directory_ref (Object Reference)

	is_encrypted (Boolean)

	encryption_algorithm (String)

	decryption_key (String)

	contains_refs (List of Object References)

	content_ref (Object Reference)

	extensions (Extensions)

	
class HTTPRequestExt(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716262].

	Properties:	
	request_method (String, required)

	request_value (String, required)

	request_version (String)

	request_header (Dictionary)

	message_body_length (Integer)

	message_body_data_ref (Object Reference)

	
class ICMPExt(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716264].

	Properties:	
	icmp_type_hex (Hex, required)

	icmp_code_hex (Hex, required)

	
class IPv4Address(**kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716252].

	Properties:	
	value (String, required)

	resolves_to_refs (List of Object References)

	belongs_to_refs (List of Object References)

	extensions (Extensions)

	
class IPv6Address(**kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716254].

	Properties:	
	value (String, required)

	resolves_to_refs (List of Object References)

	belongs_to_refs (List of Object References)

	extensions (Extensions)

	
class MACAddress(**kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716256].

	Properties:	
	value (String, required)

	extensions (Extensions)

	
class Mutex(**kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716258].

	Properties:	
	name (String, required)

	extensions (Extensions)

	
class NTFSExt(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716237].

	Properties:	
	sid (String)

	alternate_data_streams (List of Embedded Objects)

	
class NetworkTraffic(**kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716260].

	Properties:	
	start (Timestamp)

	end (Timestamp)

	is_active (Boolean)

	src_ref (Object Reference)

	dst_ref (Object Reference)

	src_port (Integer)

	dst_port (Integer)

	protocols (List of Strings, required)

	src_byte_count (Integer)

	dst_byte_count (Integer)

	src_packets (Integer)

	dst_packets (Integer)

	ipfix (Dictionary)

	src_payload_ref (Object Reference)

	dst_payload_ref (Object Reference)

	encapsulates_refs (List of Object References)

	encapsulates_by_ref (Object Reference)

	extensions (Extensions)

	
class ObservableProperty(required=False, fixed=None, default=None, type=None)

	Property for holding Cyber Observable Objects.

	
clean(value)

	

	
class PDFExt(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716241].

	Properties:	
	version (String)

	is_optimized (Boolean)

	document_info_dict (Dictionary)

	pdfid0 (String)

	pdfid1 (String)

	
class Process(**kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716273].

	Properties:	
	is_hidden (Boolean)

	pid (Integer)

	name (String)

	created (Timestamp)

	cwd (String)

	arguments (List of Strings)

	command_line (String)

	environment_variables (Dictionary)

	opened_connection_refs (List of Object References)

	creator_user_ref (Object Reference)

	binary_ref (Object Reference)

	parent_ref (Object Reference)

	child_refs (List of Object References)

	extensions (Extensions)

	
class RasterImageExt(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716243].

	Properties:	
	image_height (Integer)

	image_weight (Integer)

	bits_per_pixel (Integer)

	image_compression_algorithm (String)

	exif_tags (Dictionary)

	
class SocketExt(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716266].

	Properties:	
	address_family (Enum, required)

	is_blocking (Boolean)

	is_listening (Boolean)

	protocol_family (Enum)

	options (Dictionary)

	socket_type (Enum)

	socket_descriptor (Integer)

	socket_handle (Integer)

	
class Software(**kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716282].

	Properties:	
	name (String, required)

	cpe (String)

	languages (List of Strings)

	vendor (String)

	version (String)

	extensions (Extensions)

	
class TCPExt(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716271].

	Properties:	
	src_flags_hex (Hex)

	dst_flags_hex (Hex)

	
class UNIXAccountExt(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716289].

	Properties:	
	gid (Integer)

	groups (List of Strings)

	home_dir (String)

	shell (String)

	
class URL(**kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716284].

	Properties:	
	value (String, required)

	extensions (Extensions)

	
class UserAccount(**kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716286].

	Properties:	
	user_id (String, required)

	account_login (String)

	account_type (String)

	display_name (String)

	is_service_account (Boolean)

	is_privileged (Boolean)

	can_escalate_privs (Boolean)

	is_disabled (Boolean)

	account_created (Timestamp)

	account_expires (Timestamp)

	password_last_changed (Timestamp)

	account_first_login (Timestamp)

	account_last_login (Timestamp)

	extensions (Extensions)

	
class WindowsPEBinaryExt(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716245].

	Properties:	
	pe_type (String, required)

	imphash (String)

	machine_hex (Hex)

	number_of_sections (Integer)

	time_date_stamp (Timestamp)

	pointer_to_symbol_table_hex (Hex)

	number_of_symbols (Integer)

	size_of_optional_header (Integer)

	characteristics_hex (Hex)

	file_header_hashes (Hashes)

	optional_header (Embedded Object)

	sections (List of Embedded Objects)

	
class WindowsPEOptionalHeaderType(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716248].

	Properties:	
	magic_hex (Hex)

	major_linker_version (Integer)

	minor_linker_version (Integer)

	size_of_code (Integer)

	size_of_initialized_data (Integer)

	size_of_uninitialized_data (Integer)

	address_of_entry_point (Integer)

	base_of_code (Integer)

	base_of_data (Integer)

	image_base (Integer)

	section_alignment (Integer)

	file_alignment (Integer)

	major_os_version (Integer)

	minor_os_version (Integer)

	major_image_version (Integer)

	minor_image_version (Integer)

	major_subsystem_version (Integer)

	minor_subsystem_version (Integer)

	win32_version_value_hex (Hex)

	size_of_image (Integer)

	size_of_headers (Integer)

	checksum_hex (Hex)

	subsystem_hex (Hex)

	dll_characteristics_hex (Hex)

	size_of_stack_reserve (Integer)

	size_of_stack_commit (Integer)

	size_of_heap_reserve (Integer)

	size_of_heap_commit (Integer)

	loader_flags_hex (Hex)

	number_of_rva_and_sizes (Integer)

	hashes (Hashes)

	
class WindowsPESection(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716250].

	Properties:	
	name (String, required)

	size (Integer)

	entropy (Float)

	hashes (Hashes)

	
class WindowsProcessExt(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716275].

	Properties:	
	aslr_enabled (Boolean)

	dep_enabled (Boolean)

	priority (String)

	owner_sid (String)

	window_title (String)

	startup_info (Dictionary)

	
class WindowsRegistryKey(**kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716291].

	Properties:	
	key (String, required)

	values (List of Embedded Objects)

	modified (Timestamp)

	creator_user_ref (Object Reference)

	number_of_subkeys (Integer)

	extensions (Extensions)

	
values

	

	
class WindowsRegistryValueType(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716293].

	Properties:	
	name (String, required)

	data (String)

	data_type (Enum)

	
class WindowsServiceExt(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716277].

	Properties:	
	service_name (String, required)

	descriptions (List of Strings)

	display_name (String)

	group_name (String)

	start_type (Enum)

	service_dll_refs (List of Object References)

	service_type (Enum)

	service_status (Enum)

	
class X509Certificate(**kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716296].

	Properties:	
	is_self_signed (Boolean)

	hashes (Hashes)

	version (String)

	serial_number (String)

	signature_algorithm (String)

	issuer (String)

	validity_not_before (Timestamp)

	validity_not_after (Timestamp)

	subject (String)

	subject_public_key_algorithm (String)

	subject_public_key_modulus (String)

	subject_public_key_exponent (Integer)

	x509_v3_extensions (Embedded Object)

	extensions (Extensions)

	
class X509V3ExtenstionsType(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part4-cyber-observable-objects/stix-v2.0-cs01-part4-cyber-observable-objects.html#_Toc496716298].

	Properties:	
	basic_constraints (String)

	name_constraints (String)

	policy_constraints (String)

	key_usage (String)

	extended_key_usage (String)

	subject_key_identifier (String)

	authority_key_identifier (String)

	subject_alternative_name (String)

	issuer_alternative_name (String)

	subject_directory_attributes (String)

	crl_distribution_points (String)

	inhibit_any_policy (String)

	private_key_usage_period_not_before (Timestamp)

	private_key_usage_period_not_after (Timestamp)

	certificate_policies (String)

	policy_mappings (String)

	
CustomExtension(observable=None, type='x-custom-observable', properties=None)

	Decorator for custom extensions to STIX Cyber Observables.

	
CustomObservable(type='x-custom-observable', properties=None)

	Custom STIX Cyber Observable Object type decorator.

Example

>>> @CustomObservable('x-custom-observable', [
... ('property1', StringProperty(required=True)),
... ('property2', IntegerProperty()),
...])
... class MyNewObservableType():
... pass

	
parse_observable(data, _valid_refs=None, allow_custom=False)

	Deserialize a string or file-like object into a STIX Cyber Observable
object.

	Parameters:	
	data – The STIX 2 string to be parsed.

	_valid_refs – A list of object references valid for the scope of the
object being parsed. Use empty list if no valid refs are present.

	allow_custom – Whether to allow custom properties or not.
Default: False.

	Returns:	An instantiated Python STIX Cyber Observable object.

sdo

STIX 2.0 Domain Objects.

	
class AttackPattern(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part2-stix-objects/stix-v2.0-cs01-part2-stix-objects.html#_Toc496714302].

	Properties:	
	id (ID)

	created_by_ref (Reference)

	created (Timestamp, default: current date/time)

	modified (Timestamp, default: current date/time)

	name (String, required)

	description (String)

	kill_chain_phases (List of Kill Chain Phases)

	revoked (Boolean)

	labels (List of Strings)

	external_references (List of External References)

	object_marking_refs (List of References)

	granular_markings (List of Granular Markings)

	
class Campaign(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part2-stix-objects/stix-v2.0-cs01-part2-stix-objects.html#_Toc496714305].

	Properties:	
	id (ID)

	created_by_ref (Reference)

	created (Timestamp, default: current date/time)

	modified (Timestamp, default: current date/time)

	name (String, required)

	description (String)

	aliases (List of Strings)

	first_seen (Timestamp)

	last_seen (Timestamp)

	objective (String)

	revoked (Boolean)

	labels (List of Strings)

	external_references (List of External References)

	object_marking_refs (List of References)

	granular_markings (List of Granular Markings)

	
class CourseOfAction(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part2-stix-objects/stix-v2.0-cs01-part2-stix-objects.html#_Toc496714308].

	Properties:	
	id (ID)

	created_by_ref (Reference)

	created (Timestamp, default: current date/time)

	modified (Timestamp, default: current date/time)

	name (String, required)

	description (String)

	revoked (Boolean)

	labels (List of Strings)

	external_references (List of External References)

	object_marking_refs (List of References)

	granular_markings (List of Granular Markings)

	
class Identity(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part2-stix-objects/stix-v2.0-cs01-part2-stix-objects.html#_Toc496714311].

	Properties:	
	id (ID)

	created_by_ref (Reference)

	created (Timestamp, default: current date/time)

	modified (Timestamp, default: current date/time)

	name (String, required)

	description (String)

	identity_class (String, required)

	sectors (List of Strings)

	contact_information (String)

	revoked (Boolean)

	labels (List of Strings)

	external_references (List of External References)

	object_marking_refs (List of References)

	granular_markings (List of Granular Markings)

	
class Indicator(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part2-stix-objects/stix-v2.0-cs01-part2-stix-objects.html#_Toc496714314].

	Properties:	
	id (ID)

	created_by_ref (Reference)

	created (Timestamp, default: current date/time)

	modified (Timestamp, default: current date/time)

	name (String)

	description (String)

	pattern (Pattern, required)

	valid_from (Timestamp, default: current date/time)

	valid_until (Timestamp)

	kill_chain_phases (List of Kill Chain Phases)

	revoked (Boolean)

	labels (List of Strings, required)

	external_references (List of External References)

	object_marking_refs (List of References)

	granular_markings (List of Granular Markings)

	
class IntrusionSet(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part2-stix-objects/stix-v2.0-cs01-part2-stix-objects.html#_Toc496714317].

	Properties:	
	id (ID)

	created_by_ref (Reference)

	created (Timestamp, default: current date/time)

	modified (Timestamp, default: current date/time)

	name (String, required)

	description (String)

	aliases (List of Strings)

	first_seen (Timestamp)

	last_seen (Timestamp)

	goals (List of Strings)

	resource_level (String)

	primary_motivation (String)

	secondary_motivations (List of Strings)

	revoked (Boolean)

	labels (List of Strings)

	external_references (List of External References)

	object_marking_refs (List of References)

	granular_markings (List of Granular Markings)

	
class Malware(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part2-stix-objects/stix-v2.0-cs01-part2-stix-objects.html#_Toc496714320].

	Properties:	
	id (ID)

	created_by_ref (Reference)

	created (Timestamp, default: current date/time)

	modified (Timestamp, default: current date/time)

	name (String, required)

	description (String)

	kill_chain_phases (List of Kill Chain Phases)

	revoked (Boolean)

	labels (List of Strings, required)

	external_references (List of External References)

	object_marking_refs (List of References)

	granular_markings (List of Granular Markings)

	
class ObservedData(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part2-stix-objects/stix-v2.0-cs01-part2-stix-objects.html#_Toc496714323].

	Properties:	
	id (ID)

	created_by_ref (Reference)

	created (Timestamp, default: current date/time)

	modified (Timestamp, default: current date/time)

	first_observed (Timestamp, required)

	last_observed (Timestamp, required)

	number_observed (Integer, required)

	objects (Observable, required)

	revoked (Boolean)

	labels (List of Strings)

	external_references (List of External References)

	object_marking_refs (List of References)

	granular_markings (List of Granular Markings)

	
class Report(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part2-stix-objects/stix-v2.0-cs01-part2-stix-objects.html#_Toc496714326].

	Properties:	
	id (ID)

	created_by_ref (Reference)

	created (Timestamp, default: current date/time)

	modified (Timestamp, default: current date/time)

	name (String, required)

	description (String)

	published (Timestamp, required)

	object_refs (List of References, required)

	revoked (Boolean)

	labels (List of Strings, required)

	external_references (List of External References)

	object_marking_refs (List of References)

	granular_markings (List of Granular Markings)

	
class STIXDomainObject(allow_custom=False, **kwargs)

	

	
class ThreatActor(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part2-stix-objects/stix-v2.0-cs01-part2-stix-objects.html#_Toc496714329].

	Properties:	
	id (ID)

	created_by_ref (Reference)

	created (Timestamp, default: current date/time)

	modified (Timestamp, default: current date/time)

	name (String, required)

	description (String)

	aliases (List of Strings)

	roles (List of Strings)

	goals (List of Strings)

	sophistication (String)

	resource_level (String)

	primary_motivation (String)

	secondary_motivations (List of Strings)

	personal_motivations (List of Strings)

	revoked (Boolean)

	labels (List of Strings, required)

	external_references (List of External References)

	object_marking_refs (List of References)

	granular_markings (List of Granular Markings)

	
class Tool(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part2-stix-objects/stix-v2.0-cs01-part2-stix-objects.html#_Toc496714332].

	Properties:	
	id (ID)

	created_by_ref (Reference)

	created (Timestamp, default: current date/time)

	modified (Timestamp, default: current date/time)

	name (String, required)

	description (String)

	kill_chain_phases (List of Kill Chain Phases)

	tool_version (String)

	revoked (Boolean)

	labels (List of Strings, required)

	external_references (List of External References)

	object_marking_refs (List of References)

	granular_markings (List of Granular Markings)

	
class Vulnerability(allow_custom=False, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part2-stix-objects/stix-v2.0-cs01-part2-stix-objects.html#_Toc496714335].

	Properties:	
	id (ID)

	created_by_ref (Reference)

	created (Timestamp, default: current date/time)

	modified (Timestamp, default: current date/time)

	name (String, required)

	description (String)

	revoked (Boolean)

	labels (List of Strings)

	external_references (List of External References)

	object_marking_refs (List of References)

	granular_markings (List of Granular Markings)

	
CustomObject(type='x-custom-type', properties=None)

	Custom STIX Object type decorator.

Example

>>> @CustomObject('x-type-name', [
... ('property1', StringProperty(required=True)),
... ('property2', IntegerProperty()),
...])
... class MyNewObjectType():
... pass

Supply an __init__() function to add any special validations to the custom
type. Don’t call super().__init__() though - doing so will cause an error.

Example

>>> @CustomObject('x-type-name', [
... ('property1', StringProperty(required=True)),
... ('property2', IntegerProperty()),
...])
... class MyNewObjectType():
... def __init__(self, property2=None, **kwargs):
... if property2 and property2 < 10:
... raise ValueError("'property2' is too small.")

sro

STIX 2.0 Relationship Objects.

	
class Relationship(source_ref=None, relationship_type=None, target_ref=None, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part2-stix-objects/stix-v2.0-cs01-part2-stix-objects.html#_Toc496714340].

	Properties:	
	id (ID)

	created_by_ref (Reference)

	created (Timestamp, default: current date/time)

	modified (Timestamp, default: current date/time)

	relationship_type (String, required)

	description (String)

	source_ref (Reference, required)

	target_ref (Reference, required)

	revoked (Boolean)

	labels (List of Strings)

	external_references (List of External References)

	object_marking_refs (List of References)

	granular_markings (List of Granular Markings)

	
class STIXRelationshipObject(allow_custom=False, **kwargs)

	

	
class Sighting(sighting_of_ref=None, **kwargs)

	For more detailed information on this object’s properties, see
the STIX 2.0 specification [http://docs.oasis-open.org/cti/stix/v2.0/cs01/part2-stix-objects/stix-v2.0-cs01-part2-stix-objects.html#_Toc496714343].

	Properties:	
	id (ID)

	created_by_ref (Reference)

	created (Timestamp, default: current date/time)

	modified (Timestamp, default: current date/time)

	first_seen (Timestamp)

	last_seen (Timestamp)

	count (Integer)

	sighting_of_ref (Reference, required)

	observed_data_refs (List of References)

	where_sighted_refs (List of References)

	summary (Boolean)

	revoked (Boolean)

	labels (List of Strings)

	external_references (List of External References)

	object_marking_refs (List of References)

	granular_markings (List of Granular Markings)

Contributing

We’re thrilled that you’re interested in contributing to python-stix2! Here are
some things you should know:

	contribution-guide.org [http://www.contribution-guide.org/] has great ideas
for contributing to any open-source project (not just python-stix2).

	All contributors must sign a Contributor License Agreement. See
CONTRIBUTING.md [https://github.com/oasis-open/cti-python-stix2/blob/master/CONTRIBUTING.md]
in the project repository for specifics.

	If you are planning to implement a major feature (vs. fixing a bug), please
discuss with a project maintainer first to ensure you aren’t duplicating the
work of someone else, and that the feature is likely to be accepted.

Now, let’s get started!

Setting up a development environment

We recommend using a virtualenv [https://virtualenv.pypa.io/en/stable/].

1. Clone the repository. If you’re planning to make pull request, you should fork
the repository on GitHub and clone your fork instead of the main repo:

git clone https://github.com/yourusername/cti-python-stix2.git

	Install develoment-related dependencies:

cd cti-python-stix2
pip install -r requirements.txt

	Install pre-commit [http://pre-commit.com/#usage] git hooks:

pre-commit install

At this point you should be able to make changes to the code.

Code style

All code should follow PEP 8 [https://www.python.org/dev/peps/pep-0008/]. We
allow for line lengths up to 160 characters, but any lines over 80 characters
should be the exception rather than the rule. PEP 8 conformance will be tested
automatically by Tox and Travis-CI (see below).

Testing

Note

All of the tools mentioned in this section are installed when you run pip
install -r requirements.txt.

python-stix2 uses pytest [http://pytest.org] for testing. We encourage the
use of test-driven development (TDD), where you write (failing) tests that
demonstrate a bug or proposed new feature before writing code that fixes the bug
or implements the features. Any code contributions to python-stix2 should come
with new or updated tests.

To run the tests in your current Python environment, use the pytest command
from the root project directory:

pytest

This should show all of the tests that ran, along with their status.

You can run a specific test file by passing it on the command line:

pytest stix2/test/test_<xxx>.py

To ensure that the test you wrote is running, you can deliberately add an
assert False statement at the beginning of the test. This is another benefit
of TDD, since you should be able to see the test failing (and ensure it’s being
run) before making it pass.

tox [https://tox.readthedocs.io/en/latest/] allows you to test a package
across multiple versions of Python. Setting up multiple Python environments is
beyond the scope of this guide, but feel free to ask for help setting them up.
Tox should be run from the root directory of the project:

tox

We aim for high test coverage, using the coverage.py [http://coverage.readthedocs.io/en/latest/] library. Though it’s not an
absolute requirement to maintain 100% coverage, all code contributions must
be accompanied by tests. To run coverage and look for untested lines of code,
run:

pytest --cov=stix2
coverage html

then look at the resulting report in htmlcov/index.html.

All commits pushed to the master branch or submitted as a pull request are
tested with Travis-CI [https://travis-ci.org/oasis-open/cti-python-stix2]
automatically.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 stix2	

 	
 	
 stix2.core	

 	
 	
 stix2.datastore	

 	
 	
 stix2.datastore.filesystem	

 	
 	
 stix2.datastore.filters	

 	
 	
 stix2.datastore.memory	

 	
 	
 stix2.datastore.taxii	

 	
 	
 stix2.environment	

 	
 	
 stix2.exceptions	

 	
 	
 stix2.markings	

 	
 	
 stix2.markings.granular_markings	

 	
 	
 stix2.markings.object_markings	

 	
 	
 stix2.markings.utils	

 	
 	
 stix2.patterns	

 	
 	
 stix2.properties	

 	
 	
 stix2.utils	

 	
 	
 stix2.v20.common	

 	
 	
 stix2.v20.observables	

 	
 	
 stix2.v20.sdo	

 	
 	
 stix2.v20.sro	

 	
 	
 stix2.workbench	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X

_

 	
 	_data (MemorySink attribute)

 	(MemorySource attribute)

 	(MemoryStore attribute)

A

 	
 	add() (DataSink method)

 	(DataStoreMixin method)

 	(Environment method)

 	(FileSystemSink method)

 	(FilterSet method)

 	(MemorySink method)

 	(TAXIICollectionSink method)

 	add_data_source() (CompositeDataSource method)

 	(in module stix2.workbench)

 	add_data_sources() (CompositeDataSource method)

 	(in module stix2.workbench)

 	add_filter() (Environment method)

 	(in module stix2.workbench)

 	add_filters() (Environment method)

 	(in module stix2.workbench)

 	add_markings() (in module stix2.markings)

 	(in module stix2.markings.granular_markings)

 	(in module stix2.markings.object_markings)

 	
 	all_versions() (CompositeDataSource method)

 	(DataSource method)

 	(DataStoreMixin method)

 	(Environment method)

 	(FileSystemSource method)

 	(MemorySource method)

 	(TAXIICollectionSource method)

 	(in module stix2.workbench)

 	AlternateDataStream (class in stix2.v20.observables)

 	AndBooleanExpression (class in stix2.patterns)

 	AndObservationExpression (class in stix2.patterns)

 	apply_common_filters() (in module stix2.datastore.filters)

 	ArchiveExt (class in stix2.v20.observables)

 	Artifact (class in stix2.v20.observables)

 	AtLeastOnePropertyError

 	attack_patterns() (in module stix2.workbench)

 	AttackPattern (class in stix2.v20.sdo)

 	(class in stix2.workbench)

 	AutonomousSystem (class in stix2.v20.observables)

B

 	
 	BasicObjectPathComponent (class in stix2.patterns)

 	BinaryConstant (class in stix2.patterns)

 	BinaryProperty (class in stix2.properties)

 	
 	BooleanConstant (class in stix2.patterns)

 	BooleanProperty (class in stix2.properties)

 	build_granular_marking() (in module stix2.markings.utils)

 	Bundle (class in stix2.core)

C

 	
 	Campaign (class in stix2.v20.sdo)

 	(class in stix2.workbench)

 	campaigns() (in module stix2.workbench)

 	clean() (BinaryProperty method)

 	(BooleanProperty method)

 	(DictionaryProperty method)

 	(EmbeddedObjectProperty method)

 	(EnumProperty method)

 	(ExtensionsProperty method)

 	(FloatProperty method)

 	(HashesProperty method)

 	(HexProperty method)

 	(IDProperty method)

 	(IntegerProperty method)

 	(ListProperty method)

 	(MarkingProperty method)

 	(ObservableProperty method)

 	(PatternProperty method)

 	(Property method)

 	(ReferenceProperty method)

 	(STIXObjectProperty method)

 	(SelectorProperty method)

 	(StringProperty method)

 	(TimestampProperty method)

 	clear_markings() (in module stix2.markings)

 	(in module stix2.markings.granular_markings)

 	(in module stix2.markings.object_markings)

 	CompositeDataSource (class in stix2.datastore)

 	compress_markings() (in module stix2.markings.utils)

 	
 	convert_to_list() (in module stix2.markings.utils)

 	convert_to_marking_list() (in module stix2.markings.utils)

 	CourseOfAction (class in stix2.v20.sdo)

 	(class in stix2.workbench)

 	courses_of_action() (in module stix2.workbench)

 	create() (Environment method)

 	(ObjectFactory method)

 	(in module stix2.workbench)

 	created_by() (AttackPattern method)

 	(Campaign method)

 	(CourseOfAction method)

 	(Identity method)

 	(Indicator method)

 	(IntrusionSet method)

 	(Malware method)

 	(ObservedData method)

 	(Report method)

 	(ThreatActor method)

 	(Tool method)

 	(Vulnerability method)

 	creator_of() (DataSource method)

 	(DataStoreMixin method)

 	(Environment method)

 	(in module stix2.workbench)

 	CustomContentError

 	CustomExtension() (in module stix2.v20.observables)

 	CustomMarking() (in module stix2.v20.common)

 	CustomObject() (in module stix2.v20.sdo)

 	CustomObservable() (in module stix2.v20.observables)

D

 	
 	data_sources (CompositeDataSource attribute)

 	DataSink (class in stix2.datastore)

 	DataSource (class in stix2.datastore)

 	DataStoreMixin (class in stix2.datastore)

 	deduplicate() (in module stix2.utils)

 	default() (IDProperty method)

 	
 	DependentPropertiesError

 	dict_to_stix2() (in module stix2.core)

 	DictionaryKeyError

 	DictionaryProperty (class in stix2.properties)

 	Directory (class in stix2.v20.observables)

 	DomainName (class in stix2.v20.observables)

E

 	
 	EmailAddress (class in stix2.v20.observables)

 	EmailMessage (class in stix2.v20.observables)

 	EmailMIMEComponent (class in stix2.v20.observables)

 	EmbeddedObjectProperty (class in stix2.properties)

 	EnumProperty (class in stix2.properties)

 	Environment (class in stix2.environment)

 	
 	EqualityComparisonExpression (class in stix2.patterns)

 	escape_quotes_and_backslashes() (in module stix2.patterns)

 	expand_markings() (in module stix2.markings.utils)

 	ExtensionsProperty (class in stix2.v20.observables)

 	ExternalReference (class in stix2.v20.common)

 	ExtraPropertiesError

F

 	
 	File (class in stix2.v20.observables)

 	FileSystemSink (class in stix2.datastore.filesystem)

 	FileSystemSource (class in stix2.datastore.filesystem)

 	FileSystemStore (class in stix2.datastore.filesystem)

 	Filter (class in stix2.datastore.filters)

 	FILTER_OPS (in module stix2.datastore.filters)

 	
 	filters (DataSource attribute)

 	FilterSet (class in stix2.datastore.filters)

 	find_property_index() (in module stix2.utils)

 	FloatConstant (class in stix2.patterns)

 	FloatProperty (class in stix2.properties)

 	FollowedByObservationExpression (class in stix2.patterns)

 	format_datetime() (in module stix2.utils)

G

 	
 	get() (CompositeDataSource method)

 	(DataSource method)

 	(DataStoreMixin method)

 	(Environment method)

 	(FileSystemSource method)

 	(MemorySource method)

 	(TAXIICollectionSource method)

 	(in module stix2.workbench)

 	get_all_data_sources() (CompositeDataSource method)

 	
 	get_class_hierarchy_names() (in module stix2.utils)

 	get_markings() (in module stix2.markings)

 	(in module stix2.markings.granular_markings)

 	(in module stix2.markings.object_markings)

 	get_timestamp() (in module stix2.utils)

 	get_type_from_id() (in module stix2.utils)

 	GranularMarking (class in stix2.v20.common)

 	GreaterThanComparisonExpression (class in stix2.patterns)

 	GreaterThanEqualComparisonExpression (class in stix2.patterns)

H

 	
 	has_data_sources() (CompositeDataSource method)

 	HashConstant (class in stix2.patterns)

 	HashesProperty (class in stix2.properties)

 	
 	HexConstant (class in stix2.patterns)

 	HexProperty (class in stix2.properties)

 	HTTPRequestExt (class in stix2.v20.observables)

I

 	
 	ICMPExt (class in stix2.v20.observables)

 	id (DataSink attribute)

 	(DataSource attribute)

 	(DataStoreMixin attribute)

 	identities() (in module stix2.workbench)

 	Identity (class in stix2.v20.sdo)

 	(class in stix2.workbench)

 	IDProperty (class in stix2.properties)

 	ImmutableError

 	InComparisonExpression (class in stix2.patterns)

 	Indicator (class in stix2.v20.sdo)

 	(class in stix2.workbench)

 	indicators() (in module stix2.workbench)

 	IntegerConstant (class in stix2.patterns)

 	
 	IntegerProperty (class in stix2.properties)

 	intrusion_sets() (in module stix2.workbench)

 	IntrusionSet (class in stix2.v20.sdo)

 	(class in stix2.workbench)

 	InvalidObjRefError

 	InvalidSelectorError

 	InvalidValueError

 	IPv4Address (class in stix2.v20.observables)

 	IPv6Address (class in stix2.v20.observables)

 	is_marked() (in module stix2.markings)

 	(in module stix2.markings.granular_markings)

 	(in module stix2.markings.object_markings)

 	IsSubsetComparisonExpression (class in stix2.patterns)

 	IsSupersetComparisonExpression (class in stix2.patterns)

 	iterpath() (in module stix2.markings.utils)

K

 	
 	KillChainPhase (class in stix2.v20.common)

L

 	
 	LessThanComparisonExpression (class in stix2.patterns)

 	LessThanEqualComparisonExpression (class in stix2.patterns)

 	LikeComparisonExpression (class in stix2.patterns)

 	ListConstant (class in stix2.patterns)

 	
 	ListObjectPathComponent (class in stix2.patterns)

 	ListProperty (class in stix2.properties)

 	load_from_file() (MemorySource method)

 	(MemoryStore method)

M

 	
 	MACAddress (class in stix2.v20.observables)

 	make_constant() (in module stix2.patterns)

 	make_id() (in module stix2.datastore)

 	make_object_path() (ObjectPath static method)

 	Malware (class in stix2.v20.sdo)

 	(class in stix2.workbench)

 	malware() (in module stix2.workbench)

 	MarkingDefinition (class in stix2.v20.common)

 	MarkingNotFoundError

 	
 	MarkingProperty (class in stix2.v20.common)

 	MatchesComparisonExpression (class in stix2.patterns)

 	MemorySink (class in stix2.datastore.memory)

 	MemorySource (class in stix2.datastore.memory)

 	MemoryStore (class in stix2.datastore.memory)

 	merge() (ObjectPath method)

 	MissingPropertiesError

 	Mutex (class in stix2.v20.observables)

 	MutuallyExclusivePropertiesError

N

 	
 	NetworkTraffic (class in stix2.v20.observables)

 	
 	new_version() (in module stix2.utils)

 	NTFSExt (class in stix2.v20.observables)

O

 	
 	ObjectFactory (class in stix2.environment)

 	ObjectPath (class in stix2.patterns)

 	ObjectReferenceProperty (class in stix2.properties)

 	ObservableProperty (class in stix2.v20.observables)

 	ObservationExpression (class in stix2.patterns)

 	
 	observed_data() (in module stix2.workbench)

 	ObservedData (class in stix2.v20.sdo)

 	(class in stix2.workbench)

 	OrBooleanExpression (class in stix2.patterns)

 	OrObservationExpression (class in stix2.patterns)

P

 	
 	ParentheticalExpression (class in stix2.patterns)

 	parse() (Environment method)

 	(in module stix2.core)

 	(in module stix2.workbench)

 	parse_into_datetime() (in module stix2.utils)

 	
 	parse_observable() (in module stix2.v20.observables)

 	ParseError

 	PatternProperty (class in stix2.properties)

 	PDFExt (class in stix2.v20.observables)

 	Process (class in stix2.v20.observables)

 	Property (class in stix2.properties)

Q

 	
 	QualifiedObservationExpression (class in stix2.patterns)

 	query() (CompositeDataSource method)

 	(DataSource method)

 	(DataStoreMixin method)

 	(Environment method)

 	(FileSystemSource method)

 	(MemorySource method)

 	(TAXIICollectionSource method)

 	(in module stix2.workbench)

R

 	
 	RasterImageExt (class in stix2.v20.observables)

 	ReferenceObjectPathComponent (class in stix2.patterns)

 	ReferenceProperty (class in stix2.properties)

 	related() (AttackPattern method)

 	(Campaign method)

 	(CourseOfAction method)

 	(Identity method)

 	(Indicator method)

 	(IntrusionSet method)

 	(Malware method)

 	(ObservedData method)

 	(Report method)

 	(ThreatActor method)

 	(Tool method)

 	(Vulnerability method)

 	related_to() (CompositeDataSource method)

 	(DataSource method)

 	(DataStoreMixin method)

 	(Environment method)

 	(in module stix2.workbench)

 	Relationship (class in stix2.v20.sro)

 	relationships() (AttackPattern method)

 	(Campaign method)

 	(CompositeDataSource method)

 	(CourseOfAction method)

 	(DataSource method)

 	(DataStoreMixin method)

 	(Environment method)

 	(Identity method)

 	(Indicator method)

 	(IntrusionSet method)

 	(Malware method)

 	(ObservedData method)

 	(Report method)

 	(ThreatActor method)

 	(Tool method)

 	(Vulnerability method)

 	(in module stix2.workbench)

 	
 	remove() (FilterSet method)

 	remove_custom_stix() (in module stix2.utils)

 	remove_data_source() (CompositeDataSource method)

 	remove_data_sources() (CompositeDataSource method)

 	remove_markings() (in module stix2.markings)

 	(in module stix2.markings.granular_markings)

 	(in module stix2.markings.object_markings)

 	RepeatQualifier (class in stix2.patterns)

 	Report (class in stix2.v20.sdo)

 	(class in stix2.workbench)

 	reports() (in module stix2.workbench)

 	revoke() (in module stix2.utils)

 	RevokeError

S

 	
 	save() (in module stix2.workbench)

 	save_to_file() (MemorySink method)

 	(MemoryStore method)

 	SelectorProperty (class in stix2.properties)

 	set_default_created() (Environment method)

 	(ObjectFactory method)

 	(in module stix2.workbench)

 	set_default_creator() (Environment method)

 	(ObjectFactory method)

 	(in module stix2.workbench)

 	set_default_external_refs() (Environment method)

 	(ObjectFactory method)

 	(in module stix2.workbench)

 	set_default_object_marking_refs() (Environment method)

 	(ObjectFactory method)

 	(in module stix2.workbench)

 	set_markings() (in module stix2.markings)

 	(in module stix2.markings.granular_markings)

 	(in module stix2.markings.object_markings)

 	Sighting (class in stix2.v20.sro)

 	sink (DataStoreMixin attribute)

 	(FileSystemStore attribute)

 	(MemoryStore attribute)

 	SocketExt (class in stix2.v20.observables)

 	Software (class in stix2.v20.observables)

 	source (DataStoreMixin attribute)

 	(FileSystemStore attribute)

 	(MemoryStore attribute)

 	StartStopQualifier (class in stix2.patterns)

 	StatementMarking (class in stix2.v20.common)

 	
 	stix2 (module)

 	stix2.core (module)

 	stix2.datastore (module)

 	stix2.datastore.filesystem (module)

 	stix2.datastore.filters (module)

 	stix2.datastore.memory (module)

 	stix2.datastore.taxii (module)

 	stix2.environment (module)

 	stix2.exceptions (module)

 	stix2.markings (module)

 	stix2.markings.granular_markings (module)

 	stix2.markings.object_markings (module)

 	stix2.markings.utils (module)

 	stix2.patterns (module)

 	stix2.properties (module)

 	stix2.utils (module)

 	stix2.v20.common (module)

 	stix2.v20.observables (module)

 	stix2.v20.sdo (module)

 	stix2.v20.sro (module)

 	stix2.workbench (module)

 	stix_dir (FileSystemSink attribute)

 	(FileSystemSource attribute)

 	STIXdatetime (class in stix2.utils)

 	STIXDomainObject (class in stix2.v20.sdo)

 	STIXError

 	STIXObjectProperty (class in stix2.core)

 	STIXRelationshipObject (class in stix2.v20.sro)

 	StringConstant (class in stix2.patterns)

 	StringProperty (class in stix2.properties)

T

 	
 	TAXIICollectionSink (class in stix2.datastore.taxii)

 	TAXIICollectionSource (class in stix2.datastore.taxii)

 	TAXIICollectionStore (class in stix2.datastore.taxii)

 	TCPExt (class in stix2.v20.observables)

 	threat_actors() (in module stix2.workbench)

 	ThreatActor (class in stix2.v20.sdo)

 	(class in stix2.workbench)

 	
 	TimestampConstant (class in stix2.patterns)

 	TimestampProperty (class in stix2.properties)

 	TLPMarking (class in stix2.v20.common)

 	Tool (class in stix2.v20.sdo)

 	(class in stix2.workbench)

 	tools() (in module stix2.workbench)

 	TypeProperty (class in stix2.properties)

U

 	
 	UNIXAccountExt (class in stix2.v20.observables)

 	UnmodifiablePropertyError

 	
 	URL (class in stix2.v20.observables)

 	UserAccount (class in stix2.v20.observables)

V

 	
 	validate() (in module stix2.markings.utils)

 	values (WindowsRegistryKey attribute)

 	
 	vulnerabilities() (in module stix2.workbench)

 	Vulnerability (class in stix2.v20.sdo)

 	(class in stix2.workbench)

W

 	
 	WindowsPEBinaryExt (class in stix2.v20.observables)

 	WindowsPEOptionalHeaderType (class in stix2.v20.observables)

 	WindowsPESection (class in stix2.v20.observables)

 	WindowsProcessExt (class in stix2.v20.observables)

 	
 	WindowsRegistryKey (class in stix2.v20.observables)

 	WindowsRegistryValueType (class in stix2.v20.observables)

 	WindowsServiceExt (class in stix2.v20.observables)

 	WithinQualifier (class in stix2.patterns)

X

 	
 	X509Certificate (class in stix2.v20.observables)

 	
 	X509V3ExtenstionsType (class in stix2.v20.observables)

 _static/up.png

nav.xhtml

 Table of Contents

 		STIX 2 Python API Documentation

 		Overview

 		Goals

 		Design Decisions

 		Architecture

 		Object Layer

 		Environment Layer

 		Workbench Layer

 		User's Guide

 		Creating STIX Content

 		Creating STIX Domain Objects

 		Creating Relationships

 		Creating Bundles

 		Custom STIX Content

 		Custom Properties

 		Custom STIX Object Types

 		Custom Cyber Observable Types

 		Custom Cyber Observable Extensions

 		DataStore API

 		CompositeDataSource

 		Filters

 		De-Referencing Relationships

 		Using Environments

 		Storing and Retrieving STIX Content

 		Creating STIX Objects With Defaults

 		FileSystem

 		FileSystem API

 		FileSystem Examples

 		Data Markings

 		Creating Objects With Data Markings

 		Adding Data Markings To Existing Objects

 		Evaluating Data Markings

 		Memory

 		Memory API

 		Memory Examples

 		load_from_file() and save_to_file()

 		Parsing STIX Content

 		Parsing Custom STIX Content

 		Serializing STIX Objects

 		TAXIICollection

 		TAXIICollection API

 		TAXIICollection Examples

 		Bug and Workaround

 		Technical Specification Support

 		How imports work

 		How parsing works

 		How custom content works

 		Versioning

 		Using The Workbench

 		Retrieving STIX Data

 		Creating STIX Data

 		API Reference

 		core

 		datastore

 		filesystem

 		filters

 		memory

 		taxii

 		environment

 		exceptions

 		markings

 		granular_markings

 		object_markings

 		utils

 		patterns

 		properties

 		utils

 		workbench

 		common

 		observables

 		sdo

 		sro

 		Contributing

 		Setting up a development environment

 		Code style

 		Testing

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

